【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn).

(Ⅰ)如圖①,求AB的長(zhǎng);

(Ⅱ)如圖②,把圖①中的繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)O的對(duì)應(yīng)點(diǎn)AM恰好落在OA延長(zhǎng)線上,N是點(diǎn)A旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn).

①求證:;②求點(diǎn)N的坐標(biāo);

(Ⅲ)點(diǎn)COB的中點(diǎn),點(diǎn)D為線段OA上的動(dòng)點(diǎn),在繞點(diǎn)B順時(shí)針旋轉(zhuǎn)過程中,點(diǎn)D的對(duì)應(yīng)點(diǎn)是P,求線段CP長(zhǎng)的取值范圍(直接寫出結(jié)果).

【答案】(Ⅰ);(Ⅱ)①見解析,②;(Ⅲ).

【解析】

)過A,垂足為C,根據(jù)點(diǎn),點(diǎn)得出ACBC的長(zhǎng),再根據(jù)勾股得出AB的長(zhǎng)

)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等腰三角形的性質(zhì)可得,從而得出,繼而得出結(jié)論

②過N軸,垂足為E.連接AN,根據(jù)旋轉(zhuǎn)的性質(zhì)和一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形AOBN是平行四邊形,得出,再根據(jù)勾股定理求出BE,從而求出點(diǎn)N的坐標(biāo);

)過BCPAOP,以B為圓心BP為半徑畫圓交BCP1,和以B為圓心BO為半徑畫圓交OB的延長(zhǎng)線于P2,得出CP的最大和最小值解答即可;

解:()過A,垂足為C

,

.

中,

)①由(I)得

由旋轉(zhuǎn)得

②過N軸,垂足為E.連接AN

,

∴四邊形AOBN是平行四邊形。

中,.

III)如圖,過BCPAOP,以B為圓心BP為半徑畫圓交BCP1, CP1有最小值,

此時(shí)

BP=,∴BP1=,
CP1的最小值為 -3=

B為圓心BO為半徑畫圓交OB的延長(zhǎng)線于P2,,CP 2有最大值;
此時(shí)CP2=BC +BP2=3+6=9

線段CP長(zhǎng)的取值范圍: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校射擊隊(duì)從甲、乙、丙、丁四人中選拔一人參加市運(yùn)動(dòng)會(huì)射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績(jī)的平均數(shù)及方差如下表所示:

平均數(shù)/環(huán)

9.5

9.5

9.6

9.6

方差/環(huán)2

5.1

4.7

4.5

5.1

請(qǐng)你根據(jù)表中數(shù)據(jù)選一人參加比賽,最合適的人選是(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形的矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)分別為,直線、直線分別與直線相交于點(diǎn),.記旋轉(zhuǎn)角為.

(Ⅰ)如圖①,當(dāng)矩形的頂點(diǎn)落在軸正半軸上時(shí),

1)求證:

2)求點(diǎn)的坐標(biāo).

(Ⅱ)如圖②,當(dāng)矩形的頂點(diǎn)落在直線上時(shí),

1)求證:.

2)求點(diǎn)的坐標(biāo).

(Ⅲ)在矩形旋轉(zhuǎn)過程中,當(dāng)時(shí),若,請(qǐng)直接寫出此時(shí)點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得_____________________;

(Ⅱ)解不等式②,得_____________________

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,DBC延長(zhǎng)線上一點(diǎn),,E,F分別是BC,AD的中點(diǎn),若,則線段EF的長(zhǎng)是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,點(diǎn)C,E在⊙O上,且sinACE,點(diǎn)D為弧BE中點(diǎn),連結(jié)DE,則的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6AD3,點(diǎn)E是邊CD的中點(diǎn),點(diǎn)P,Q分別是射線DC與射線EB上的動(dòng)點(diǎn),連結(jié)PQ,AP,BP,設(shè)DPt,EQt

1)當(dāng)點(diǎn)P在線段DE上(不包括端點(diǎn))時(shí).

①求證:APPQ;②當(dāng)AP平分∠DPB時(shí),求△PBQ的面積.

2)在點(diǎn)P,Q的運(yùn)動(dòng)過程中,是否存在這樣的t,使得△PBQ為等腰三角形?若存在,請(qǐng)求出t的值;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A4,0),B為第一象限內(nèi)一點(diǎn),且為等邊三角形,COB的中點(diǎn),連接AC.

I)如圖①,求點(diǎn)C的坐標(biāo);

I)如圖②,將沿x軸向右平移得到,設(shè),其中

①設(shè)重疊部分的面積為S,用含m的式子表示S

②連接,當(dāng)取最小值時(shí),求點(diǎn)E的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形對(duì)折后展開(圖④是連續(xù)兩次對(duì)折后再展開),再按圖示方法折疊,能夠得到一個(gè)直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案