【題目】某海域有A、B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求:
(1)∠C= °;
(2)此時(shí)刻船與B港口之間的距離CB的長(結(jié)果保留根號(hào)).
【答案】(1)60;(2)
【解析】(1)由平行線的性質(zhì)以及方向角的定義得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根據(jù)方向角的定義得出∠BAC=∠BAE+∠CAE=75°,利用三角形內(nèi)角和定理求出∠C=60°;
(2)作AD⊥BC交BC于點(diǎn)D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根據(jù)BC=BD+CD即可求解.
解:(1)如圖所示,
∵∠EAB=30°,AE∥BF,
∴∠FBA=30°,
又∠FBC=75°,
∴∠ABC=45°,
∵∠BAC=∠BAE+∠CAE=75°,
∴∠C=60°.
故答案為60;
(2)如圖,作AD⊥BC于D,
在Rt△ABD中,
∵∠ABD=45°,AB=60,
∴AD=BD=30.
在Rt△ACD中,
∵∠C=60°,AD=30,
∴tanC=,
∴CD==10,
∴BC=BD+CD=30+10.
答:該船與B港口之間的距離CB的長為(30+10)海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,對(duì)角線的垂直平分線分別交、、于點(diǎn)、、,連接和.
(1)求證:四邊形為菱形.
(2)若,,求菱形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上A,B,C三點(diǎn)對(duì)應(yīng)的數(shù)a,b,c滿足(a+40)2+|b+10|=0,B為線段AC的中點(diǎn).
(1)直接寫出A,B,C對(duì)應(yīng)的數(shù)a,b,c的值.
(2)如圖1,點(diǎn)D表示的數(shù)為10,點(diǎn)P,Q分別從A,D同時(shí)出發(fā)勻速相向運(yùn)動(dòng),點(diǎn)P的速度為6個(gè)單位/秒,點(diǎn)Q的速度為1個(gè)單位/秒.當(dāng)點(diǎn)P運(yùn)動(dòng)到C后迅速以原速返回到A又折返向C點(diǎn)運(yùn)動(dòng);點(diǎn)Q運(yùn)動(dòng)至B點(diǎn)后停止運(yùn)動(dòng),同時(shí)P點(diǎn)也停止運(yùn)動(dòng).求在此運(yùn)動(dòng)過程中P,Q兩點(diǎn)相遇點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù).
(3)如圖2,M,N為A,C之間兩點(diǎn)(點(diǎn)M在N左邊,且它們不與A,C重合),E,F分別為AN,CM的中點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC,D為BC上一點(diǎn),E為AC上一點(diǎn),AD=AE.
(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC= °.
(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD= °,∠CDE= °.
(3)設(shè)∠BAD=α,∠CDE=β猜想α,β之間的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;
(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購買一批足球運(yùn)動(dòng)裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊(duì)服,送一個(gè)足球;乙商場優(yōu)惠方案是:若購買隊(duì)服超過80套,則購買足球打八折.
(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費(fèi)用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E,F,與雙曲線y=﹣(x<0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn),直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),PA=PB,則a=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com