(2008•門頭溝區(qū)二模)解方程:x2-12x-3=0.
分析:根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方進(jìn)行計算即可.
解答:解:x2-12x-3=0,
移項,得x2-12x=3,
等式兩邊同時加上一次項系數(shù)-12一半的平方36,得x2-12x+36=39,
∴(x-6)2=39,
∴x-6=±
39
,
∴x1=6+
39
,x2=6-
39
點評:此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確應(yīng)用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2008•門頭溝區(qū)二模)如圖是一圓柱,則它的左視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•門頭溝區(qū)二模)某市從經(jīng)濟(jì)收入中劃撥出780萬元,對教育、文化、衛(wèi)生等社會事業(yè)按比例進(jìn)行投入,其中對教育投入這一數(shù)據(jù)丟失了,請結(jié)合圖中的信息,該市對教育投入的資金為
265.2
265.2
萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•門頭溝區(qū)二模)將圖①所示的正六邊形進(jìn)行分割得到圖②,再將圖②中最小的某一個正六邊形按同樣的方式進(jìn)行分割得到圖③,再將圖③中最小的某一個正六邊形按同樣的方式進(jìn)行分割,…,則第5個圖形中共有
13
13
個正六邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•門頭溝區(qū)二模)解不等式組
2x-11<0
x<
1
2
x+4
,并求出它的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•門頭溝區(qū)二模)等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,AC=BC,BF⊥AC于F,線段BF與圖中的哪一條線段相等.先寫出你的猜想,再加以證明.
猜想:BF=
DE
DE

查看答案和解析>>

同步練習(xí)冊答案