【題目】已知正反比例函數(shù)的圖像交于、兩點(diǎn),過第二象限的點(diǎn)作軸,點(diǎn)的橫坐標(biāo)為,且,點(diǎn)在第四象限
(1)求這兩個(gè)函數(shù)解析式;
(2)求這兩個(gè)函數(shù)圖像的交點(diǎn)坐標(biāo);
(3)若點(diǎn)在坐標(biāo)軸上,聯(lián)結(jié)、,寫出當(dāng)時(shí)的點(diǎn)坐標(biāo)
【答案】(1)y=-,y=(2)A(-2,3),B(2,-3)(3)(2,0)或(-2,0)或(0,3)或(0,-3)
【解析】
(1)先根據(jù)題意得出,再結(jié)合知,再利用待定系數(shù)法求解可得;(2)聯(lián)立正反比例函數(shù)解析式得到方程組,解之即可得交點(diǎn)坐標(biāo);(3)由“點(diǎn)在坐標(biāo)軸上”分點(diǎn)在軸上和軸上兩種情況,根據(jù)利用割補(bǔ)法求解可得.
解:(1)如圖,
∵點(diǎn)的橫坐標(biāo)為-2,且軸,
∴,
∵,
∴,
則點(diǎn),
將代入得:,則正比例函數(shù)的解析式為;
將代入得:,則反比例函數(shù)的解析式為;
(2)∵
∴得:或,
∵點(diǎn)在第四象限,
∴點(diǎn)坐標(biāo)為,
故答案為:.
(3)若在軸上,設(shè),
∵
∴,
解得:或,
∴點(diǎn)的坐標(biāo)為或;
若在軸上,設(shè),
∵
∴,
解得:或,
∴點(diǎn)的坐標(biāo)為或;
綜上,點(diǎn)的坐標(biāo)為或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動(dòng)中,研究三角形和正方形的性質(zhì)時(shí),做了如下探究:在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖①,當(dāng)點(diǎn)D在線段BC上時(shí)。
①BC與CF的位置關(guān)系為:___;
②BC,CD,CF之間的數(shù)量關(guān)系為:___;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖②,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(3)拓展延伸
如圖③,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=,CD=BC,請(qǐng)求出GE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,AB=AC,∠BAC=90°.
(1)如圖(1),CD平分∠ACB交AB于點(diǎn)D,BE⊥CD于點(diǎn)E,延長(zhǎng)BE、CA相交于點(diǎn)F,請(qǐng)猜想線段BE與CD的數(shù)量關(guān)系,并說明理由.
(2)如圖(2),點(diǎn)F在BC上,∠BFE=∠ACB,BE⊥FE于點(diǎn)E,AB與FE交于點(diǎn)D,F(xiàn)H∥AC交AB于H,延長(zhǎng)FH、BE相交于點(diǎn)G,求證:BE=FD;
(3)如圖(3),點(diǎn)F在BC延長(zhǎng)線上,∠BFE=∠ACB,BE⊥FE于點(diǎn)E,F(xiàn)E交BA延長(zhǎng)線于點(diǎn)D,請(qǐng)你直接寫出線段BE與FD的數(shù)量關(guān)系(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,折疊長(zhǎng)方形(四個(gè)角都是直角)的一邊AD使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=DC=8cm,AD=BC=10cm,求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了平面直角坐標(biāo)系及格點(diǎn)△AOB.(頂點(diǎn)是網(wǎng)格線的交點(diǎn))
(1)畫出將△AOB沿y軸翻折得到的△AOB1,則點(diǎn)B1的坐標(biāo)為_________.
(2)畫出將△AOB沿射線AB1方向平移2.5個(gè)單位得到的△A2O2B2,則點(diǎn)A2的坐標(biāo)為_______.
(3)請(qǐng)求出△AB1B2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn).
(1)如圖1,若點(diǎn)D、E分別在AC、BC的延長(zhǎng)線上,通過觀察和測(cè)量,猜想FH和FG的數(shù)量關(guān)系為______和位置關(guān)系為______;
(2)如圖2,若將三角板△DEC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)至ACE在一條直線上時(shí),其余條件均不變,則(1)中的猜想是否還成立,若成立,請(qǐng)證明,不成立請(qǐng)說明理由;
(3)如圖3,將圖1中的△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,和是等邊三角形,,
請(qǐng)你判斷的形狀并說明理由;
如果繞點(diǎn)旋轉(zhuǎn),交邊于點(diǎn),請(qǐng)你判斷的周長(zhǎng)是否發(fā)生變化?如果不變,說明理由;如果變化,說明當(dāng)點(diǎn)在什么位置時(shí),的周長(zhǎng)最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若我們規(guī)定三角“”表示為:abc;方框“”表示為:(xm+yn).例如:=1×19×3÷(24+31)=3.請(qǐng)根據(jù)這個(gè)規(guī)定解答下列問題:
(1)計(jì)算:= ______ ;
(2)代數(shù)式為完全平方式,則k= ______ ;
(3)解方程:=6x2+7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B、C分別在x軸、y軸正半軸上,且OB=2OA,OBOC=OCOA=2.
(1)求點(diǎn)C的坐標(biāo);
(2)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以每秒3個(gè)單位的速度沿BA向終點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)終點(diǎn)A時(shí),點(diǎn)P、Q均停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(t>0)秒,線段PQ的長(zhǎng)度為y,用含t的式子表示y,并寫出相應(yīng)的t的范圍;
(3)在(2)的條件下,過點(diǎn)P作x軸的垂線PM,PM=PQ,是否存在t值使點(diǎn)O為PQ中點(diǎn)? 若存在求t值并求出此時(shí)△CMQ的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com