【題目】觀察下列各組數(shù):(3,4,5),(5,12,13),(7,24,25),(9,4041),,由此可發(fā)現(xiàn):,,,,請(qǐng)寫(xiě)出第6個(gè)數(shù)組:__

【答案】1384,85

【解析】

先找出每組勾股數(shù)與其組數(shù)的關(guān)系,找出規(guī)律,再根據(jù)此規(guī)律進(jìn)行解答.

解:∵①32×1+1,42×12+2×1,52×12+2×1+1;

52×2+1122×22+2×2,132×22+2×2+1

72×3+1,242×32+2×3252×32+2×3+1;

92×4+1,402×42+2×4,412×42+2×4+1;

112×5+1,602×52+2×5,612×52+2×5+1,

則⑥132×6+1,2×62+2×684,2×62+2×6+185,

故答案為:(1384,85).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖, 是半圓的直徑,D是半圓上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A,B 重合),

1)求證:AC是半圓的切線;

2)過(guò)點(diǎn)OBD的平行線,交AC于點(diǎn)E,交AD于點(diǎn)F,EF=4, AD=6, BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:

AEB的度數(shù)為______;

線段AD,BE之間的數(shù)量關(guān)系為______

(2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點(diǎn)AD,E在同一直線上,CM為△DCEDE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AEBE之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰△ABC,∠BAC120°,ADBCD點(diǎn),點(diǎn)PBA延長(zhǎng)線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),若ACAO+AP

1)求證:∠APO=∠OCA;

2)求證:△OCP是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+x+4的對(duì)稱軸是直線x=3,且與軸相交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)的右側(cè)),與軸交于C點(diǎn).

(1)A點(diǎn)的坐標(biāo)是   ;B點(diǎn)坐標(biāo)是   ;

(2)直線BC的解析式是:   ;

(3)點(diǎn)P是直線BC上方的拋物線上的一動(dòng)點(diǎn)(不與B、C重合),是否存在點(diǎn)P,使△PBC的面積最大.若存在,請(qǐng)求出△PBC的最大面積,若不存在,試說(shuō)明理由;

(4)若點(diǎn)Mx軸上,點(diǎn)N在拋物線上,以A、C、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)M點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EF分別是BC、CD邊上的點(diǎn),∠EAF45°

1)如圖(1),試判斷EFBE,DF間的數(shù)量關(guān)系,并說(shuō)明理由;

2)如圖(2),若AHEF于點(diǎn)H,試判斷線段AHAB的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E在直角ABC的斜邊AB上,以AE為直徑的O與直角邊BC相切于點(diǎn)D.

(1)求證:AD平分BAC;

(2)若BE=2,BD=4,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A4,1),B1,1C4,5),D6,﹣3),E(﹣2,5

1)在坐標(biāo)系中描出各點(diǎn),畫(huà)出△AEC,△BCD

2)求出△AEC的面積(簡(jiǎn)要寫(xiě)明簡(jiǎn)答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案