【題目】已知函數(shù)圖象如圖所示,根據(jù)圖象可得:
(1)拋物線頂點(diǎn)坐標(biāo);
(2)對稱軸為
(3)當(dāng)x=時,y有最大值是;
(4)當(dāng)時,y隨著x得增大而增大.
(5)當(dāng)時,y>0.
【答案】
(1)(﹣3,2)
(2)x=﹣3
(3)-3;2
(4)x<﹣3
(5)﹣5<x<﹣1
【解析】解:(1)∵拋物線與x軸交于點(diǎn)(﹣5,0),(﹣1,0),
∴頂點(diǎn)橫坐標(biāo)為 =﹣3,
由圖可知頂點(diǎn)縱坐標(biāo)為2,
∴頂點(diǎn)坐標(biāo)為(﹣3,2);(2)對稱軸為x=﹣3;(3)當(dāng)x=﹣3時,y有最大值是2;(4)當(dāng)x<﹣3時,y隨著x得增大而增大;(5)當(dāng)﹣5<x<﹣1時,y>0.
所以答案是(1)(﹣3,2);(2)x=﹣3;(3)﹣3,2;(4)x<﹣3;(5)﹣5<x<﹣1.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)三天假期的某一天,小明全家上午8時自駕小汽車從家里出發(fā),到章丘某旅游景點(diǎn)游玩.該小汽車離家的距離S(千米)與時間t(小時)的關(guān)系如圖所示.根據(jù)圖象提供的有關(guān)信息,下列說法中錯誤的是( )
A. 景點(diǎn)離小明家180千米 B. 小明到家的時間為17點(diǎn)
C. 返程的速度為60千米每小時 D. 10點(diǎn)至14點(diǎn),汽車勻速行駛
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結(jié)論是(把你認(rèn)為正確結(jié)論的序號都填上.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】洋芋是大多數(shù)云南人都喜愛的食品,現(xiàn)有20袋洋芋,以每袋450斤為標(biāo)準(zhǔn),超過或不足的斤數(shù)分別用正、負(fù)數(shù)來表示,與標(biāo)準(zhǔn)質(zhì)量的差值記錄如表:
每袋與標(biāo)準(zhǔn)質(zhì)量的差值(斤) | ﹣5 | ﹣2 | 0 | 1 | 3 | 6 |
袋數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這20袋洋芋中,最重的一袋比最輕的一袋重幾斤?
(2)這20袋洋芋的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾斤?
(3)求這20袋洋芋的總質(zhì)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O逆時針方向旋轉(zhuǎn)90°
得到△OA1B1 .
(1)線段A1B1的長是 , ∠AOA1的度數(shù)是;
(2)連結(jié)AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有 A、B 兩點(diǎn),所表示的有理數(shù)分別為 a、b,已知 AB=12,原點(diǎn) O 是線段AB 上的一點(diǎn),且 OA=2OB.
(1)求a,b;
(2)若動點(diǎn) P,Q 分別從 A,B 同時出發(fā),向右運(yùn)動,點(diǎn) P 的速度為每秒 2 個單位長度,點(diǎn) Q 的速度為每秒 1 個單位長度,設(shè)運(yùn)動時間為 t 秒,當(dāng)點(diǎn) P 與點(diǎn) Q 重合時,P,Q 兩點(diǎn)停止運(yùn)動.
①當(dāng) t 為何值時,2OPOQ=4;
②當(dāng)點(diǎn) P 到達(dá)點(diǎn) O 時,動點(diǎn) M 從點(diǎn) O 出發(fā),以每秒 3 個單位長度的速度也向右運(yùn)動,當(dāng)點(diǎn) M 追上點(diǎn) Q 后立即返回,以同樣的速度向點(diǎn) P 運(yùn)動,遇到點(diǎn) P 后再立即返回,以同樣的速度向點(diǎn) Q 運(yùn)動,如此往返,直到點(diǎn) P,Q 停止時,點(diǎn) M 也停止運(yùn)動,求在此過程中點(diǎn) M 行駛的總路程,并直接寫出點(diǎn) M 最后位置在數(shù)軸上所對應(yīng)的有理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)m為何值時,關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0.
(1)有兩個不相等的實數(shù)根;
(2)有兩個相等的實數(shù)根;
(3)沒有實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請我仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a=________, b=___________.
(2)若a+4=(m+n)2,且a、m、n均為正整數(shù),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有一座拱橋圓弧形,它的跨度AB為60米,拱高PM為18米,當(dāng)洪水泛濫到跨度只有30米時,就要采取緊急措施,若拱頂離水面只有4米,即PN=4米時,是否采取緊急措施?( =1.414)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com