【題目】(1)120分時,時鐘的時針與分針的夾角是幾度?

(2)在時鐘上,7點到8點之間,時針和分針何時成30°的角?

【答案】(1)80°;(2) 7點分或7點

【解析】

(1)畫出草圖,根據(jù)分針與時針每分鐘旋轉(zhuǎn)的度數(shù)列式進行計算即可;

(2)七點時,時針與分針兩者夾角為210°,分兩種情況畫出草圖,列方程進行求解即可得.

1)如圖,∵分針的轉(zhuǎn)動速度為:6°/分,時針的轉(zhuǎn)動速度為:0.5°/分,

120分時,時針與分針的夾角是20×6°-30°-20×0.5°=80°;

(2)分針的轉(zhuǎn)動速度為:6°/分,時針的轉(zhuǎn)動速度為:0.5°/分,

①如圖1,原來時針與分針的夾角為210°,設(shè)x分鐘時,第一次夾角為30°,

可得:6x-0.5x=210-30,

解得:x= ;

②如圖2,原來時針與分針的夾角為210°,設(shè)x分鐘時,第二次夾角為30°,

可得:6x-0.5x=210+30,

解得:x=,

即當7分或7分時,時針和分針成30°的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是、,則=( )

A. 5 B. 4 C. 6 D. 、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E、F分別在AB,AD,CE=3,且∠ECF=45°,CF長為(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幸福是奮斗出來的,在數(shù)軸上,若CA的距離剛好是3,則C點叫做A幸福點,若CA、B的距離之和為6,則C叫做A、B幸福中心

(1)如圖1,點A表示的數(shù)為﹣1,則A的幸福點C所表示的數(shù)應(yīng)該是   

(2)如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為4,點N所表示的數(shù)為﹣2,點C就是M、N的幸福中心,則C所表示的數(shù)可以是   (填一個即可);

(3)如圖3,A、B、P為數(shù)軸上三點,點A所表示的數(shù)為﹣1,點B所表示的數(shù)為4,點P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點P出發(fā),以2個單位每秒的速度向左運動,當經(jīng)過多少秒時,電子螞蟻是AB的幸福中心?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G.若BG=4 ,則△CEF的面積是(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.

(1)數(shù)軸上點A表示的數(shù)為________

(2)將長方形OABC沿數(shù)軸水平移動,移動后的長方形記為O′A′B′C′,移動后的長方形O′A′B′C′與原長方形OABC重疊部分(如圖2中陰影部分)的面積記為S.

①當S恰好等于原長方形OABC面積的一半時,數(shù)軸上點A′表示的數(shù)是多少?

  ②設(shè)點A的移動距離AA′x.

  ()S4時,求x的值;

  )D為線段AA′的中點,點E在線段OO′上,且OEOO′,當點D,E所表示的數(shù)互為相反數(shù)時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于下列結(jié)論: ①二次函數(shù)y=6x2 , 當x>0時,y隨x的增大而增大.
②關(guān)于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.
③設(shè)二次函數(shù)y=x2+bx+c,當x≤1時,總有y≥0,當1≤x≤3時,總有y≤0,那么c的取值范圍是c≥3.
其中,正確結(jié)論的個數(shù)是(
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=∠COD=90°,∠BOC=34°.

(1)判斷BOC與AOD之間的數(shù)量關(guān)系,并說明理由;

(2)若OE平分AOC,求EOC的余角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國經(jīng)濟的快速發(fā)展讓眾多國家感受到了威脅,隨著釣魚島事件、南海危機、薩德入韓等一系列事件的發(fā)生,國家安全一再受到威脅,所謂“國家興亡,匹夫有責”,某校積極開展國防知識教育,九年級甲、乙兩班分別選5名同學(xué)參加“國防知識”比賽,其預(yù)賽成績?nèi)鐖D所示:

根據(jù)上圖填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

甲班

______

______

乙班

______

10

根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度分析哪個班的成績較好.

查看答案和解析>>

同步練習(xí)冊答案