【題目】如圖,交于點,交于點,交于點,,,,給出下列結論:①;②;③;④;⑤.其中正確的結論有( )
A.2個B.3個C.4個D.5個
【答案】C
【解析】
根據(jù)∠E=∠F=90°,∠B=∠C,AE=AF可得△ABE≌△ACF,可得②BE=CF;∠BAE=∠CAF可得①∠1=∠2;由ASA可得③△ACN≌△ABM,⑤.④CD=DN不成立.
由已知條件,可直接得到三角形全等,得到結論,采用排除法,對各個選項進行驗證從而確定正確的結論.
解:∵
∴∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C
∴∠1=∠2(①正確)
∵∠E=∠F=90°,AE=AF,∠B=∠C
∴△ABE≌△ACF(ASA)
∴AB=AC,BE=CF(②正確)
∵∠CAN=∠BAM,∠B=∠C,AB=AC
∴△ACN≌△ABM(③正確)
∴CN=BM(④不正確).
∵∠1=∠2,AE=AF,∠E=∠F
∴△AFN≌△AEM(⑤正確)
所以正確結論有①②③⑤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,,,,,把一條長為2016個單位長度且沒有彈性的細線線的粗細忽略不計的一端固定在點A處,并按的規(guī)律繞在四邊形ABCD的邊上,則細線另一端所在位置的點的坐標是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是( 。
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結論:①abc<0;②3b+4c<0;③c>﹣1;④關于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結論個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是學習“分式方程應用”時,老師板書的例題和兩名同學所列的方程.
15.3分式方程
例:有甲、乙兩個工程隊,甲隊修路米與乙隊修路米所用時間相等.乙隊每天比甲隊多修米,求甲隊每天修路的長度.
冰冰:
慶慶:
根據(jù)以上信息,解答下列問題:
(1)冰冰同學所列方程中的表示_____,慶慶同學所列方 程中的表示;
(2)兩個方程中任選一個,寫出它的等量關系;
(3)解(2)中你所選擇的方程,并解答老師的例題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為的正方形中剪掉一個邊長為的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)探究:上述操作能驗證的等式是:(請選擇正確的一個)
A. B. C.
(2)應用:利用你從(1)選出的等式,完成下列各題:
①已知,,求的值;
②計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內(nèi).現(xiàn)向正方形內(nèi)隨機投擲小球(假設小球落在正方形內(nèi)每一點都是等可能的),經(jīng)過大量重復投擲試驗,發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計不規(guī)則區(qū)域的面積約為( 。
A. 2.6m2 B. 5.6m2 C. 8.25m2 D. 10.4m2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結論中,正確的結論的個數(shù)( )
①;②;③;④; ⑤.
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),以lcm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當一個點到達點C時,另一個點也隨之停止.設運動時間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關系的圖象是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com