【題目】如圖,已知△ABC中,∠C=90°,AC=BC,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△AB'C'的位置,連接C′B,C′B=﹣1,則AC=_____.
【答案】.
【解析】
如圖,連接BB′,延長(zhǎng)BC'交AB'于點(diǎn)H,由旋轉(zhuǎn)的性質(zhì)可得AB=AB′,∠BAB′=60°,可證△ABB′為等邊三角形,由“SSS”可證△BB′C′≌△BAC,可得∠B′BC′=∠ABC′=30°,由等邊三角形的性質(zhì)和直角三角形的性質(zhì)可求解.
解:如圖,連接BB′,延長(zhǎng)BC'交AB'于點(diǎn)H,
∵將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△AB'C'的位置,
∴AB=AB′,∠BAB′=60°,
∴△ABB′為等邊三角形,
∴∠B′BA=60°,BB′=BA;
在△BB′C′與△BAC中,
,
∴△BB′C′≌△BAC(SSS),
∴∠B′BC′=∠ABC′=30°,且AB=BB',
∴BH⊥AB',AH=B'H,
∴BH=AH,
∵AC'=B'C',∠AC'B'=90°,C'H⊥AB'
∴AH=C'H,
∵BC'=BH﹣C'H=AH﹣AH=﹣1,
∴AH=1,
∴AB'=2=AB,
∵∠C=90°,AC=BC,
∴AB=AC,
∴AC=,
故答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2,為什么?
(3)怎樣圍才能使圍出的矩形場(chǎng)地面積最大?最大面積為多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)某班學(xué)生準(zhǔn)備去購(gòu)買《英漢詞典》一書,此書的標(biāo)價(jià)為20元.現(xiàn)A、B兩書店都有此書出售,A店按如下方法促銷:若只購(gòu)買1本,則按標(biāo)價(jià)銷售;當(dāng)一次性購(gòu)買多于1本,但不多于20本時(shí),每多購(gòu)買一本,每本的售價(jià)在標(biāo)價(jià)的基礎(chǔ)上優(yōu)惠2%(例如,買2本每本的售價(jià)優(yōu)惠2%,買3本每本的售價(jià)優(yōu)惠4%,依此類推);當(dāng)購(gòu)買多于20本時(shí),每本的售價(jià)為12元.B書店一律按標(biāo)價(jià)的7折銷售.
(1)試分別寫出在兩書店購(gòu)買此書的總價(jià)yA、yB與購(gòu)書本數(shù)之間的函數(shù)關(guān)系式.
(2)若該班一次購(gòu)買多于20本,去哪家書店購(gòu)買更合算?為什么?若要一次性購(gòu)買不多于20本,先寫出y(y=yA﹣yB)與購(gòu)書本數(shù)x之間的函數(shù)關(guān)系式,畫出其函數(shù)圖象,再利用函數(shù)圖象分析去哪家書店購(gòu)買更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面院墻,用籬笆圍成一個(gè)外形為矩形的花圃,花圃的面積為S平方米,平行于院墻的一邊長(zhǎng)為x米.
(1)若院墻可利用最大長(zhǎng)度為10米,籬笆長(zhǎng)為24米,花圃中間用一道籬笆間隔成兩個(gè)小矩形,求S與x之間的函數(shù)關(guān)系;
(2)在(1)的條件下,若圍成的花圃面積為45平方米,求AB的長(zhǎng);
(3)在(1)的條件下,能否圍成面積比45平方米更大的花圃?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中的點(diǎn)Q,我們記點(diǎn)Q到橫軸的距離為d1,到縱軸的距離為d2,規(guī)定:若d1≥d2,則稱d1為點(diǎn)Q的“系長(zhǎng)距”;若d1<d2,則稱d2為點(diǎn)Q的“系長(zhǎng)距”
例如:點(diǎn)Q(3,﹣4)到橫軸的距離d1=4,到縱軸的距離d2=3,因?yàn)?/span>4>3,所以點(diǎn)Q的系長(zhǎng)距”為4
(1)①點(diǎn)A(﹣6,2)的“系長(zhǎng)距”為 ;②若點(diǎn)B(a,2)的“系長(zhǎng)距”為4,則a的值為 .
(2)已知A(3,0),B(0,4),點(diǎn)P為線段AB上的一點(diǎn),且PB:PA=2:3,點(diǎn)P的“系長(zhǎng)距”.
(3)若點(diǎn)C在雙曲線y=上,且點(diǎn)C的“系長(zhǎng)距”為6,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過(guò)380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)該產(chǎn)品銷售價(jià)定為每件多少元時(shí),每星期的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)該產(chǎn)品銷售價(jià)在什么范圍時(shí),每星期的銷售利潤(rùn)不低于6000元,請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點(diǎn)D是線段BC的中點(diǎn),∠EDF=120°,DE與線段AB相交于點(diǎn)E,DF與線段AC相交于點(diǎn)F.
(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長(zhǎng);
(2)如圖2,將(1)中的∠EDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點(diǎn)F.
求證:BE+CF=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=-x2+2x+3.
(1)求函數(shù)圖像的頂點(diǎn)坐標(biāo),并畫出這個(gè)函數(shù)的圖像;
(2)根據(jù)圖像,直接寫出:
①當(dāng)函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;
②當(dāng)-2<x<2時(shí),函數(shù)值y的取值范圍;
③若經(jīng)過(guò)點(diǎn)(0,k)且與x軸平行的直線l與y=-x2+2x+3的圖像有公共點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,E是正方形ABCD邊AB上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G.
①線段DB和DG的數(shù)量關(guān)系是 ;
②寫出線段BE,BF和DB之間的數(shù)量關(guān)系.
(2)當(dāng)四邊形ABCD為菱形,∠ADC=60°,點(diǎn)E是菱形ABCD邊AB所在直線上的一點(diǎn),連接BD、DE,將∠BDE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線BC交于點(diǎn)F和點(diǎn)G.
①如圖2,點(diǎn)E在線段AB上時(shí),請(qǐng)?zhí)骄烤段BE、BF和BD之間的數(shù)量關(guān)系,寫出結(jié)論并給出證明;
②如圖3,點(diǎn)E在線段AB的延長(zhǎng)線上時(shí),DE交射線BC于點(diǎn)M,若BE=1,AB=2,直接寫出線段GM的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com