A. | -$\frac{1}{11}$ | B. | $\frac{1}{11}$ | C. | -$\frac{5}{7}$ | D. | -$\frac{7}{5}$ |
分析 把方程組看作關(guān)于x、y的二元一次方程組,解得x=7z-3,y=-11z+7,則用z表示出S得到S=3z-2,再利用x,y,z為三個(gè)非負(fù)實(shí)數(shù)得到$\frac{3}{7}$≤z≤$\frac{7}{11}$,然后利用一次函數(shù)的性質(zhì)求S的最大值.
解答 解:$\left\{\begin{array}{l}{3x+2y+z=5①}\\{2x+y-3z=1②}\end{array}\right.$,
②×2-①得x-7z=-3,所以x=7z-3,
把x=7z-3代入②得14z-6+y-3z=1,所以y=-11z+7,
所以S=3(7z-3)+(-11z+7)-7z=3z-2,
因?yàn)?\left\{\begin{array}{l}{x≥0}\\{7z-3≥0}\\{-11z+7≥0}\end{array}\right.$,
所以$\frac{3}{7}$≤z≤$\frac{7}{11}$,
當(dāng)z=$\frac{7}{11}$時(shí),S有最大值,最大值為3×$\frac{7}{11}$-2=-$\frac{1}{11}$.
故選A.
點(diǎn)評(píng) 本題考查了一次函數(shù)的性質(zhì):k>0,y隨x的增大而增大,函數(shù)從左到右上升;k<0,y隨x的增大而減小,函數(shù)從左到右下降.也考查了解三元一次方程組.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com