【題目】下列有關(guān)圓的一些結(jié)論:①與半徑長相等的弦所對的圓周角是30°;②圓內(nèi)接正六邊形的邊長與該圓半徑相等;③垂直于弦的直徑平分這條弦;④平分弦的直徑垂直于弦.其中正確的是( )

A. ①②③ B. ①③④ C. ②③ D. ②④

【答案】C

【解析】試題解析:與半徑長相等的弦所對的圓周角是30°150°,所以①錯(cuò)誤;
圓內(nèi)接正六邊形的邊長與該圓半徑相等,所以②正確;
垂直于弦的直徑平分這條弦,所以③正確;
平分弦(非直徑)的直徑垂直于弦,所以④錯(cuò)誤.
故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2bxc=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為“倍根方程”。

(1)請問一元二次方程x23x+2=0是倍根方程嗎?如果是,請說明理由。

(2)若一元二次方程ax2bx-6=0是倍根方程,且方程有一個(gè)根為2,求a、b的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).

(1)求拋物線的解析式;

(2)若點(diǎn)D在線段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);

(3)在條件(2)下,在拋物線的對稱軸上找一點(diǎn)M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時(shí)點(diǎn)M的坐標(biāo);

(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)M=(x-3)(x-7),N=(x-2)(x-8),則MN的關(guān)系為(
A.MN
B.MN
C.MN
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組數(shù)中,不相等的一組是( 。

A. (-23和-23 B. (-22和-22

C. +(-2)和-2 D. |2|3|2|3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx-3經(jīng)過(-1,0),(3,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=kx與拋物線交于A,B兩點(diǎn).

(1)寫出點(diǎn)C的坐標(biāo)并求出此拋物線的解析式;

(2)當(dāng)原點(diǎn)O為線段AB的中點(diǎn)時(shí),求k的值及A,B兩點(diǎn)的坐標(biāo);

(3)是否存在實(shí)數(shù)k使得△ABC的面積為?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的對角線AC、BD交于O點(diǎn),∠ABC的平分線交ACE,交CDF,∠DBF=15°,連結(jié)OF,則下列三角形①△AOD,②△COF,③△DOF,④△EOF中是等腰三角形的為________(填入序號)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車在公路上行駛,兩次拐彎后,仍在原來的方向上平行行駛,那么兩個(gè)拐彎的角度可能為 ( )

A. 先右轉(zhuǎn)50°,后右轉(zhuǎn)40° B. 先右轉(zhuǎn)50°,后左轉(zhuǎn)40°

C. 先右轉(zhuǎn)50°,后左轉(zhuǎn)130° D. 先右轉(zhuǎn)50°,后左轉(zhuǎn)50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題是( )

A. 兩組對角分別相等的四邊形是平行四邊形

B. 有一條對角線與一組鄰邊構(gòu)成等腰三角形的平行四邊形是菱形

C. 一組鄰邊互相垂直,兩組對邊分別平行的四邊形是矩形

D. 有一組鄰邊相等且互相垂直的平行四邊形是正方形

查看答案和解析>>

同步練習(xí)冊答案