作业宝如圖,△OAB中,OA=OB=10,∠AOB=80°,以點(diǎn)O為圓心,6為半徑的優(yōu)弧數(shù)學(xué)公式分別交OA,OB于點(diǎn)M,N.
(1)點(diǎn)P在右半弧上(∠BOP是銳角),將OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;
(2)點(diǎn)T在左半弧上,若AT與弧相切,求點(diǎn)T到OA的距離;
(3)設(shè)點(diǎn)Q在優(yōu)弧數(shù)學(xué)公式上,當(dāng)△AOQ的面積最大時(shí),直接寫(xiě)出∠BOQ的度數(shù).

(1)證明:如圖1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,
∠BOP′=∠POP′+∠BOP=80°+∠BOP,
∴∠AOP=∠BOP′,
∵在△AOP和△BOP′中

∴△AOP≌△BOP′(SAS),
∴AP=BP′;

(2)解:如圖1,連接OT,過(guò)點(diǎn)T作TH⊥OA于點(diǎn)H,
∵AT與相切,
∴∠ATO=90°,
∴AT===8,
×OA×TH=×AT×OT,
×10×TH=×8×6,
解得:TH=,即點(diǎn)T到OA的距離為

(3)解:如圖2,當(dāng)OQ⊥OA時(shí),△AOQ的面積最大;
理由:∵OQ⊥OA,
∴QO是△AOQ中最長(zhǎng)的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,
當(dāng)Q點(diǎn)在優(yōu)弧右側(cè)上,
∵OQ⊥OA,
∴QO是△AOQ中最長(zhǎng)的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,
綜上所述:當(dāng)∠BOQ的度數(shù)為10°或170°時(shí),△AOQ的面積最大.
分析:(1)首先根據(jù)已知得出∠AOP=∠BOP′,進(jìn)而得出△AOP≌△BOP′,即可得出答案;
(2)利用切線的性質(zhì)得出∠ATO=90°,再利用勾股定理求出AT的長(zhǎng),進(jìn)而得出TH的長(zhǎng)即可得出答案;
(3)當(dāng)OQ⊥OA時(shí),△AOQ面積最大,且左右兩半弧上各存在一點(diǎn)分別求出即可.
點(diǎn)評(píng):此題主要考查了圓的綜合應(yīng)用以及切線的判定與性質(zhì)以及全等三角形的判定與性質(zhì)等知識(shí),根據(jù)數(shù)形結(jié)合進(jìn)行分類討論得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,△OAB中,OA=OB,以O(shè)為圓心的圓交BC于點(diǎn)C,D,求證:AC=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,△OAB中,頂點(diǎn)A的坐標(biāo)為(2,-3),則△OAB關(guān)于y軸對(duì)稱的△O/A/B/的頂點(diǎn)A′坐標(biāo)為
(-2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△OAB中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(2,2),點(diǎn)P從點(diǎn)A出發(fā),沿A→B→O的方向以每秒
2
個(gè)單位勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)D(0,2)出發(fā),沿y軸正方精英家教網(wǎng)向以每秒2個(gè)單位勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求∠BAO的度數(shù).
(2)設(shè)△OPQ的面積為S(平方單位),求當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),S(平方單位)與時(shí)間t(秒)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(3)當(dāng)點(diǎn)P沿A→B→O的方向運(yùn)動(dòng)時(shí),試問(wèn):是否存在點(diǎn)P使∠OPQ=90°?如果存在,請(qǐng)求出相應(yīng)的時(shí)間t;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河北)如圖,△OAB中,OA=OB=10,∠AOB=80°,以點(diǎn)O為圓心,6為半徑的優(yōu)弧
MN
分別交OA,OB于點(diǎn)M,N.
(1)點(diǎn)P在右半弧上(∠BOP是銳角),將OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;
(2)點(diǎn)T在左半弧上,若AT與弧相切,求點(diǎn)T到OA的距離;
(3)設(shè)點(diǎn)Q在優(yōu)弧
MN
上,當(dāng)△AOQ的面積最大時(shí),直接寫(xiě)出∠BOQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,△OAB中,OA=OB,⊙O經(jīng)過(guò)AB的中點(diǎn)C,且與OA、OB分別交于點(diǎn)D、E.

(1)如圖①,判斷直線AB與⊙O的位置關(guān)系并說(shuō)明理由;
(2)如圖②,連接CD、CE,當(dāng)△OAB滿足什么條件時(shí),四邊形ODCE為菱形,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案