【題目】為了響應(yīng)上海市市政府綠色出行的號召,減輕校門口道路擁堵的現(xiàn)狀,王強(qiáng)決定改父母開車接送為自己騎車上學(xué).已知他家離學(xué)校7.5千米上下班高峰時段,駕車的平均速度比自行車平均速度快15千米/小時騎自行車所用時間比駕車所用時間多小時,求自行車的平均速度?

【答案】自行車的平均速度是15千米/時

【解析】試題分析根據(jù)題目中的關(guān)鍵語句騎自行車所用時間比駕車所用時間多小時”,找到等量關(guān)系列出分式方程求解即可.

試題解析設(shè)自行車的平均速度是x千米/時.根據(jù)題意,列方程得

=

解得x1=15,x2=﹣30

經(jīng)檢驗,x1=15是原方程的根且符合題意,x2=﹣30不符合題意舍去.

自行車的平均速度是15千米/時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD 中,對角線AC,BD交于點O,以 AD,OD為鄰邊作平行四邊形ADOE,連接BE.

(1) 求證:四邊形AOBE是菱形;

(2) 若∠EAO+DCO=180°,DC=2,求四邊形ADOE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示.

(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度數(shù);

(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校八年級學(xué)生舉行朗誦比賽,全年級學(xué)生都參加,學(xué)校對表現(xiàn)優(yōu)異的學(xué)生進(jìn)行表彰,設(shè)置、二、三等獎和進(jìn)步獎共四個獎項,賽后將八年級(1)班的獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請報據(jù)圖中的信息,解答下列問題:

(1)八年級(1)班共有 名學(xué)生;

(2)將條形圖補充完整;在扇形統(tǒng)計圖中,二等獎對應(yīng)的扇形的圓心角度數(shù) ;

(3)如果該八年級共有800名學(xué)生,請估計榮獲一、二、三等獎的學(xué)生共有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c經(jīng)過點A(-1t),B(3t),與y軸交于點C(0,-1).一次函數(shù)y=x+n的圖象經(jīng)過拋物線的頂點D

)求拋物線的表達(dá)式.

)求一次函數(shù)的表達(dá)式.

)將直線繞其與軸的交點旋轉(zhuǎn),使當(dāng)時,直線總位于拋物線的下方,請結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知在Rt△ABC,ACB = 90o,AC =6,BC = 8F在線段AB,以點B為圓心BF為半徑的圓交BC于點E,射線AE交圓B于點D(點DE不重合).

1如果設(shè)BF = x,EF = yyx之間的函數(shù)關(guān)系式,并寫出它的定義域;

2如果,ED的長;

3聯(lián)結(jié)CDBD,請判斷四邊形ABDC是否為直角梯形?說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB高16m,遠(yuǎn)處有一塔CD,某人在樓底B處測得塔頂C的仰角為38.5°,在樓頂A處測得塔頂?shù)难鼋菫?2°,求塔高CD的高及大樓與塔之間的距離BC的長.

(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數(shù)與碟子的高度的關(guān)系如下表:

碟子的個數(shù)

1

2

3

4

碟子的高度(單位:cm)

2

2+1.5

2+3

2+4.5

(1)當(dāng)桌子上放有x()碟子時,請寫出此時碟子的高度(用含x的式子表示).

(2)分別從正面、左面、上面三個方向看這些碟子,看到的形狀圖如圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一些相同的房間需要粉刷墻面.一天3名一級技工去粉刷8個房間,結(jié)果其中有50m2墻面未來得及粉刷;同樣時間內(nèi)5名二級技工粉刷了10個房間之外,還多粉刷了另外的40m2墻面.每名一級技工比二級技工一天多粉刷12m2墻面,求一個一級技工和一個二級技工每天粉刷的墻面各是多少.

查看答案和解析>>

同步練習(xí)冊答案