【題目】如圖,拋物線頂點A的坐標為(1,4),拋物線與x軸相交于B、C兩點,與y軸交于點E(0,3).
(1)求拋物線的表達式;
(2)已知點F(0,﹣3),在拋物線的對稱軸上是否存在一點G,使得EG+FG最小,如果存在,求出點G的坐標;如果不存在,請說明理由.
【答案】(1)y=﹣x2+2x+3;(2)存在,G(1,0).
【解析】
(1)根據(jù)題目可設二次函數(shù)的頂點式,代入值求解
(2)根據(jù)二次函數(shù)圖像的對稱性找對稱點,可求得E'F的解析式,即可求得G點坐標.
(1)設拋物線的表達式為:y=a(x﹣1)2+4,
把(0,3)代入得:3=a(0﹣1)2+4,
a=﹣1,
∴拋物線的表達式為:y=﹣(x﹣1)2+4=﹣x2+2x+3;
(2)存在,
如圖1,作E關于對稱軸的對稱點E',連接E'F交對稱軸于G,此時EG+FG的值最小,
∵E(0,3),
∴E'(2,3),
易得E'F的解析式為:y=3x﹣3,
當x=1時,y=3×1﹣3=0,
∴G(1,0)
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點觀察籃板上沿D點的仰角為45°,在支架底端的A點觀察籃板上沿D點的仰角為54°,點C與籃板下沿點E在同一水平線,若AB=1.91米,籃板高度DE為1.05米,求籃板下沿E點與地面的距離.(結果精確到0.1m,參考數(shù)據(jù):sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位淘寶店主準備購進甲、乙兩種服裝進行銷售,若一件甲種服裝的進價比一件乙種服裝的進價多元,用元購進甲種服裝的數(shù)是用元購進乙種服裝數(shù)的倍.
(1)求每件甲種服裝和乙種服裝的進價分別是多少元?
(2)該淘寶店甲種服裝每件售價元,乙種服裝每件售價元,店主根據(jù)買家需求,決定向這家服裝廠購進一批服裝,且購進乙種服裝的數(shù)比購進甲種服裝的數(shù)的倍還多件,若本次購進的兩種服裝全部售出后,總利潤多于元,求該淘寶店本次購進甲種服裝至少是多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,我國古建筑的大門上常常懸掛著巨大的匾額,圖2中的線段就是懸掛在墻壁上的某塊匾額的截面示意圖.已知米,.從水平地面點處看點,仰角,從點處看點,仰角.且米,求匾額懸掛的高度的長.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)請按下列要求畫圖:
①將△ABC先向右平移4個單位長度、再向上平移2個單位長度,得到△A1B1C1,畫出△A1B1C1;
②△A2B2C2與△ABC關于原點O成中心對稱,畫出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2關于點M成中心對稱,請直接寫出對稱中心M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中裝有5個紅球、3個白球,這些球除顏色外其他都相同,在看不到球的條件下,隨機地從這個袋子中摸出兩個球,摸到的兩個球都是紅球的概率是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AE是⊙O的弦,C是弧AE的中點,弦CG⊥AB于點D,交AE于點F,過點C作⊙O的切線,交BA延長線于點P,連接BE
(1)求證:PC∥AE;
(2)若sin∠P=,CF=5,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com