【題目】已知:拋物線C1: 與C2:y=x2+2mx+n具有下列特征:①都與x軸有交點;②與y軸相交于同一點.
(1)求m,n的值;
(2)試寫出x為何值時,y1>y2?
(3)試描述拋物線C1通過怎樣的變換得到拋物線C2 .
【答案】
(1)
解:由C1知:△=(m+2)2﹣4×( m2+2)=m2+4m+4﹣2m2﹣8=﹣m2+4m﹣4=﹣(m﹣2)2≥0,
∴m=2.
當x=0時,y=4.∴當x=0時,n=4
(2)
解:令y1>y2時,x2﹣4x+4>x2+4x+4,
∴x<0.
∴當x<0時,y1>y2
(3)
解:由C1向左平移4個單位長度得到C2
【解析】(1)由于兩函數都與x軸有交點,可令拋物線C1中,y=0,得出的方程必有△≥0,時,據此可求出的m的值,由于兩函數與y軸的交點相同,可先根據C1求出與y軸的交點,然后代入C2中即可求出n的值.(2)根據(1)可得出兩函數的解析式,令y1>y2 , 可得出一個不等式方程,即可求出x的取值范圍.(3)將兩函數化為頂點式,即可得出所求的結論.
【考點精析】根據題目的已知條件,利用二次函數的圖象和二次函數的性質的相關知識可以得到問題的答案,需要掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數學 來源: 題型:
【題目】隨著移動終端設備的升級換代,手機已經成為我們生活中不可缺少的一部分,為了解中學生在假期使用手機的情況(選項:A.和同學親友聊天;B.學習;C.購物;D.游戲;E.其它),端午節(jié)后某中學在全校范圍內隨機抽取了若干名學生進行調查,得到如下圖表(部分信息未給出):
選項 | 頻數 | 頻率 |
A | 10 | m |
B | n | 0.2 |
C | 5 | 0.1 |
D | p | 0.4 |
E | 5 | 0.1 |
根據以上信息解答下列問題:
(1)這次被調查的學生有多少人?
(2)求表中m,n,p的值,并補全條形統計圖.
(3)若該中學約有800名學生,估計全校學生中利用手機購物或玩游戲的共有多少人?并根據以上調查結果,就中學生如何合理使用手機給出你的一條建議.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一種拉桿式旅行箱的示意圖,箱體長AB=50cm,拉桿最大伸長距離BC=30cm,(點A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,其直徑為10cm,⊙A與水平地面切于點D,過A作AE∥DM.當人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點C處且拉桿達到最大延伸距離時,點C距離水平地面(40 +5)cm,求此時拉桿箱與水平面AE所成角∠CAE的大小及點B到水平地面的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖矩形ABCD中,AD=5,AB=7,點E為DC上一個動點,把△ADE沿AE折疊,當點D的對應點D′落在∠ABC的角平分線上時,DE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.
(1)求∠COE的度數;
(2)若OF⊥OE,求∠COF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠生產一種產品,當生產數量至少為10噸,但不超過50噸時,每噸的成本y(萬元/噸)與生產數量x(噸)的函數關系的圖象如圖所示.
(1)求y關于x的函數解析式,并寫出x的取值范圍;
(2)當生產這種產品每噸的成本為7萬元時,求該產品的生產數量.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我校組織八年級學生進行籃球比賽,八年級(1)班的班長張歡負責買礦泉水給隊員喝。張歡到商店去購買A牌礦泉水,該商店對A牌礦泉水的銷售方法是:“購買不超過30瓶按零售價銷售,每瓶1.5元;多于30瓶但不超過50瓶,按零售價的8折銷售;購買多于50瓶,按零售價的6折銷售.”該班兩次共購A牌礦泉水70瓶(第一次多于第二次),共付出90.6元.
(1)該班分兩次購買礦泉水比一次性購買70瓶多花了多少錢?
(2)該班第一次與第二次分別購買礦泉水多少瓶?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=35cm,(點A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點D,AE∥DN,某一時刻,點B距離水平面38cm,點C距離水平面59cm.
(1)求圓形滾輪的半徑AD的長;
(2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點C處且拉桿達到最大延伸距離時,點C距離水平地面73.5cm,求此時拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com