【題目】如圖,在平面直角坐標系中,O為坐標原點,直線y=﹣x﹣3與x軸交于點A,與y軸交于點C,拋物線y=x2+bx+c經過A、C兩點,與x軸交于另一點B
(1)求拋物線的解析式;
(2)點D是第二象限拋物線上的一個動點,連接AD、BD、CD,當S△ACD=S四邊形ACBD時,求D點坐標;
(3)在(2)的條件下,連接BC,過點D作DE⊥BC,交CB的延長線于點E,點P是第三象限拋物線上的一個動點,點P關于點B的對稱點為點Q,連接QE,延長QE與拋物線在A、D之間的部分交于一點F,當∠DEF+∠BPC=∠DBE時,求EF的長.
【答案】(1)y=x2+2x﹣3(2)(﹣4,5)(3)3+
【解析】試題分析:(1)、首先求出點A和點C的坐標,然后將其代入二次函數解析式,利用待定系數法求出函數解析式;(2)、首先求出AB的長度,然后根據面積之間的關系得出點E的坐標,從而得出直線CE的函數解析式,將一次函數和二次函數聯立成方程組,從而得出點D的坐標;(3)、過點D作DN⊥x軸,垂足為N,過點P作PM⊥x軸,垂足為M,利用待定系數法求出直線BC和直線DE的函數解析式,從而求出點E的坐標,利用兩點之間的距離公式得出BC和CE的長度,證明出△PCB和△QEB全等,將y=3代入二次函數解析式,從而得到點F的坐標,最后求出EF的長度.
試題解析:(1)解:∵令x=0得:y=﹣3, ∴C(0,﹣3).
令y=0得:﹣x﹣3=0,解得x=﹣3, ∴A(﹣3,0).
將A、C兩點的坐標代入拋物線的解析式的: ,解得: .
∴拋物線的解析式為y=x2+2x﹣3
(2)解:如圖1所示: 令y=0得:x2+2x﹣3=0,解得x=﹣3或x=1. ∴AB=4.
∵S△ACD= S四邊形ACBD , ∴S△ADC:S△DCB=3:5. ∴AE:EB=3:5. ∴AE=4× = .
∴點E的坐標為(﹣ ,0).
設EC的解析式為y=kx+b,將點C和點E的坐標代入得: ,
解得:k=﹣2,b=﹣3. ∴直線CE的解析式為y=﹣2x﹣3.
將y=﹣2x﹣3與y=x2+2x﹣3聯立,解得:x=﹣4或x=0(舍去),
將x=﹣4代入y=﹣2x﹣3得:y=5, ∴點D的坐標為(﹣4,5).
(3)解:如圖2所示:過點D作DN⊥x軸,垂足為N,過點P作PM⊥x軸,垂足為M.
設直線BC的解析式為y=kx+b,將點C和點B的坐標代入得: ,
解得:k=3,b=﹣3, ∴直線BC的解析式為y=3x﹣3.
設直線DE的解析式為y=﹣ x+n,將點D的坐標代入得:﹣ ×(﹣4)+n=5,
解得:n=5﹣ = . ∴直線DE的解析式為y=﹣ x+ ,
將y=3x﹣3與y=﹣ x+ 聯立解得:x=2,y=3. ∴點E坐標為(2,3).
依據兩點間的距離公式可知:BC=CE= .
∵點P與點Q關于點B對稱, ∴PB=BQ.
在△PCB和△QEB中 , ∴△PCB≌△QEB.
∴∠BPC=∠Q. 又∵∠DEF+∠BPC=∠DBE,∠DEF=∠QEG,∠EGB=∠Q+∠QEG
∴∠DBE=∠DGB. 又∵∠DBE+∠BDE=90°, ∴∠DGB+∠BDG=90°,即∠PBD=90°.
∵D(﹣4,5),B(1,0), ∴DM=NB. ∴∠DBN=45°. ∴∠PBM=45°.
∴PM=MB 設點P的坐標為(a,a2+2a﹣3),則BM=1﹣a,PM=﹣a2﹣2a+3.
∴1﹣a=﹣a2﹣2a+3,解得:a=﹣2或a=1(舍去). ∴點P的坐標為(﹣2,3).
∴PC∥x軸. ∵∠Q=∠BPC, ∴EQ∥PC. ∴點E與點F的縱坐標相同.
將y=3代入拋物線的解析式得:x2+2x﹣3=3,解得:x=﹣1﹣或x=﹣1+(舍去).
∴點F的坐標為(﹣1 ,3). ∴EF=2﹣(﹣1﹣)=3+.
科目:初中數學 來源: 題型:
【題目】“格子乘法”是15世紀中葉,意大利數學家帕喬利在《算術幾何及比例性質摘要》一書中介紹的一種兩個數的相乘的計算方法.這種方法傳入中國之后,在明朝數學家程大位的《算法統(tǒng)宗》書中被稱為“鋪地錦”具體步驟如下:
①先畫一個矩形,把它分成p×q個方格(p,q分別為兩乘數的位數)在方格上邊、右邊分別寫下兩個因數;
②再用對角線把方格一分為二,分別記錄上述各位數字相應乘積的十位數與個位數;
③然后這些乘積由右下到左上,沿對角線方向相加,相加滿十時向前進一;
④最后得到結果(方格左側與下方數字依次排列).比如:
(1)圖1是用“鋪地錦”計算x9×784的格子,則z= ,x9×784=
(2)圖2是用“鋪地錦”計算ab×cd的格子,已知ab×cd=2176,求m和n的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到的位置,點B、O分別落在點、處,點在x軸上,再將繞點順時針旋轉到的位置,點在x軸上,將繞點順時針旋轉到的位置,點在x軸上,依次進行下去…若點, ,則點的坐標為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求證:無論m取何值,原方程總有兩個不相等的實數根:
(2)若x1,x2是原方程的兩根,且|x1﹣x2|=2,求m的值,并求出此時方程的兩根.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在正方形中,點分別在上,△是等邊三角形,連接交于,給出下列結論:
①; ② ;
③垂直平分; ④.
其中結論正確的共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新知探究: 光在反射時,光束的路徑可用圖(1)來表示. 叫做入射光線,叫做反射光線,從入射點引出的一條垂直于鏡面的射線叫做法線. 與的夾角叫入射角,與的夾角叫反射角.根據科學實驗可得:.則圖(1)中與的數量關系是: 理由: ;
問題解決: 生活中我們可以運用“激光”和兩塊相交的平面鏡進行測距.如圖(2)當一束“激光”射入到平面鏡上、被反射到平面鏡上,又被平面鏡反射后得到反射光線.
(1)若反射光線沿著入射光線的方向反射回去,即,且,則
(2)猜想:當 時,任何射到平面鏡上的光線經過平面鏡和的兩次反射后,入射光線與反射光線總是平行的.請你根據所學過的知識及新知說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】山西民間的雕刻藝術源遠流長,主要以古代傳統(tǒng)吉祥紋樣為素材,以石雕、木雕磚雕等形式,來體現主人的高尚情操和文化修養(yǎng)以及人們的美好愿望.某木雕經銷商購進“木象”和“木馬”兩種雕刻藝術品,購“木象”藝術品共用了元,“木馬”藝術品共用了元已知“木馬”每件的進價比“木象”每件的進價貴元,且購進“木象”“木馬”的數量相同.
求每件“木象”、“木馬”藝術品的進價;
該經銷商將購進的兩種藝術品進行銷售,“木象”的銷售單價為元,“木馬”的銷售單價為元,銷售過程中發(fā)現“木象”的銷量不好,經銷商決定:“木象”銷售一定數量后,將剩余的“木象”按原銷售單價的七折銷售;“木馬”的銷售單價保持不變要使兩種藝術品全部售完后共獲利不少于元,問“木象”按原銷售單價應至少銷售多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解七、八年級學生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數、中位數如下:
年級 | 平均數 | 中位數 |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學生有400人,假設全部參加此次測試,請估計七年級成績超過平均數76.9分的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數(, 為實數).
()當, 取何值時,函數是二次函數.
()若它是一個二次函數,假設,那么:
①它一定經過哪個點?請說明理由.
②若取該函數上橫坐標滿足(為整數)的所有點,組成新函數.當時, 隨的增大而增大,且時是函數最小值,求滿足的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com