如圖,在Rt△ABC中,∠B=90°,AB=BE=EF=FC.求證:△AEF△CEA.
證明:設(shè)AB=BE=EF=FC=a,
∵∠B=90°,
∴在直角三角形ABE中,由勾股定理得AE=
2
a.
AE
EF
=
2
a
a
=
2
EC
AE
=
2a
2
a
=
2
,
AE
EF
=
EC
AE
且∠AEF=∠CEA.
∴△AEF△CEA.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知點(diǎn)P是△ABC上的一點(diǎn),連接CP,若AB=m,AC=n,當(dāng)AP與m,n之間滿足關(guān)系式______時(shí),△ACP△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AC=8厘米,BC=16厘米,點(diǎn)P從點(diǎn)A出發(fā),沿著AC邊向點(diǎn)C以1cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿著CB邊向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),如果P與Q同時(shí)出發(fā),經(jīng)過幾秒△PQC和△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:△ABC為等腰直角三角形,∠ACB=90°,延長(zhǎng)BA至E,延長(zhǎng)AB至F,∠ECF=135°,求證:△EAC△CBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,P是△ABC的AB邊上的一點(diǎn),下列條件不可能是△ACP△ABC的是( 。
A.∠ACP=∠BB.AP•BC=AC•PC
C.∠APC=∠ACBD.AC2=AP•AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,將四邊形ACBD沿直線EF折疊,使D與C重合,CE與CF分別交AB于點(diǎn)G、H.
(1)求證:△AEG△CHG;
(2)若BC=1,求cos∠CHG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD和四邊形ACED都是平行四邊形,點(diǎn)R為DE的中點(diǎn),BR分別交AC,CD于點(diǎn)P,Q.
(1)請(qǐng)寫出圖中各對(duì)相似三角形(相似比為1除外);
(2)請(qǐng)選擇一對(duì)相似三角形給與證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,6),B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P,Q移動(dòng)的時(shí)間為t(s).當(dāng)t為何值時(shí),△APQ與△AOB相似?并求出此時(shí)點(diǎn)P與點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,早上10點(diǎn)小東測(cè)得某樹的影長(zhǎng)為2m,到了下午5時(shí)又測(cè)得該樹的影長(zhǎng)為8m,若兩次日照的光線互相垂直,則樹的高度約為______m.

查看答案和解析>>

同步練習(xí)冊(cè)答案