如圖,E,O,A三點共線,OB平分∠AOC,∠DOC=2∠EOD,已知∠AOB=30°,則∠EOD的度數(shù)為
40°
40°
分析:先根據(jù)角平分線的定義求出∠AOC的度數(shù),再由兩角互補的定義求出∠EOC的度數(shù),根據(jù)∠DOC=2∠EOD即可得出結論.
解答:解:∵E、O、A三點共線,OB平分∠AOC,∠AOB=30°,
∴∠AOC=2∠AOB=2×30°=60°,
∵∠EOC+∠AOC=180°,
∴∠EOC=180°-∠AOC=180°-60°=120°,
∵∠DOC=2∠EOD,
∴∠EOD=
1
3
∠EOC=
1
3
×120°=40°.
故答案為:40°.
點評:本題考查的是角的計算及角平分線的定義,在解答此類問題時要注意各角之間的和、差及倍數(shù)關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,A、C、E三點在同一條直線上,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結論的個數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,A、Q、R三點在一條直線上,S為直線外一點,∠AQS=136°,∠QRS=64°,則∠QSR=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A,B,C三點在同一平面內,從山腳纜車站A測得山頂C的仰角為45°,測得另一纜精英家教網(wǎng)車站B的仰角為30°,AB間纜繩長500米(自然彎曲忽略不計).(
3
≈1.73
,精確到1米)
(1)求纜車站B與纜車站A間的垂直距離;
(2)乘纜車達纜車站B,從纜車站B測得山頂C的仰角為60°,求山頂C與纜車站A間的垂直距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A、B、C三點在⊙O上,∠BAC=60°,若⊙O的半徑OC為12,則劣弧BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A,O,B三點在同一直線上,OC,OE分別是∠BOD,∠AOD的平分線,OC與OE有什么位置關系?為什么?

查看答案和解析>>

同步練習冊答案