【題目】已知拋物線y=x2+bx+c經(jīng)過點(diǎn)A(﹣2,0),B(0、﹣4)與x軸交于另一點(diǎn)C,連接BC.

(1)求拋物線的解析式;

(2)如圖,P是第一象限內(nèi)拋物線上一點(diǎn),且SPBO=SPBC,求證:AP∥BC;

(3)在拋物線上是否存在點(diǎn)D,直線BD交x軸于點(diǎn)E,使ABE與以A,B,C,E中的三點(diǎn)為頂點(diǎn)的三角形相似(不重合)?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)拋物線的解析式為:y=x2﹣x﹣4;(2)證明見解析;(3)點(diǎn)D的坐標(biāo)為(,)或(,﹣).

【解析】1)利用待定系數(shù)法求拋物線的解析式即可

(2)令y=0求拋物線與x軸的交點(diǎn)C的坐標(biāo),作△POB和△PBC的高線,根據(jù)面積相等可得OE=CF,證明△OEG≌△CFG,則OG=CG=2,根據(jù)三角函數(shù)列式可得P的坐標(biāo),利用待定系數(shù)法求一次函數(shù)APBC的解析式,k相等則兩直線平行;

(3)先利用概率的知識(shí)分析A,B,C,E中的三點(diǎn)為頂點(diǎn)的三角形,有兩個(gè)三角形與△ABE有可能相似,即△ABC和△BCE,

①當(dāng)△ABE與以A,B,C中的三點(diǎn)為頂點(diǎn)的三角形相似,如圖2,根據(jù)存在公共角∠BAE=BAC,可得△ABE∽△ACB,列比例式可得E的坐標(biāo),利用待定系數(shù)法求直線BE的解析式,與拋物線列方程組可得交點(diǎn)D的坐標(biāo);

②當(dāng)△ABE與以B,C、E中的三點(diǎn)為頂點(diǎn)的三角形相似,如圖3,同理可得結(jié)論.

(1)把點(diǎn)A(﹣2,0),B(0、﹣4)代入拋物線y=x2+bx+c中得:

,解得:

∴拋物線的解析式為:y=x2﹣x﹣4;

(2)當(dāng)y=0時(shí),x2﹣x﹣4=0,

解得:x=﹣24,

C(4,0),

如圖1,過OOEBPE,過CCFBPF,設(shè)PBx軸于G,

SPBO=SPBC,

PBOE=PBCF,

OE=CF,

易得△OEG≌△CFG,

OG=CG=2,

設(shè)P(x,x2﹣x﹣4),過PPMy軸于M,

tanPBM=,

BM=2PM,

4+x2﹣x﹣4=2x,

x2﹣6x=0,

x1=0(舍),x2=6,

P(6,8),

易得AP的解析式為:y=x+2,

BC的解析式為:y=x﹣4,

APBC;

(3)以A,B,C,E中的三點(diǎn)為頂點(diǎn)的三角形有△ABC、ABE、ACE、BCE,四種,其中△ABE重合,不符合條件,△ACE不能構(gòu)成三角形,

∴當(dāng)△ABE與以A,B,C,E中的三點(diǎn)為頂點(diǎn)的三角形相似,存在兩個(gè)三角形:△ABC和△BC,

①當(dāng)△ABE與以A,B,C中的三點(diǎn)為頂點(diǎn)的三角形相似,如圖2,

∵∠BAE=BAC,ABE≠ABC,

∴∠ABE=ACB=45°,

∴△ABE∽△ACB,

,

,

AE=

E(,0),

B(0,﹣4),

易得BE:y=,

x2﹣x﹣4=x﹣4,

x1=0(舍),x2=

D(,);

②當(dāng)△ABE與以B,C、E中的三點(diǎn)為頂點(diǎn)的三角形相似,如圖3,

∵∠BEA=BEC,

∴當(dāng)∠ABE=BCE時(shí),△ABE∽△BCE,

,

設(shè)BE=2m,CE=4m,

RtBOE中,由勾股定理得:BE2=OE2+OB2,

,

3m2﹣8m+8=0,

(m﹣2)(3m﹣2)=0,

m1=2,m2=,

OE=4m﹣4=12,

OE=<2,AEB是鈍角,此時(shí)△ABE與以B,C、E中的三點(diǎn)為頂點(diǎn)的三角形不相似,如圖4,

E(﹣12,0);

同理得BE的解析式為:y=﹣x﹣4,

x﹣4=x2﹣x﹣4,

x=0(舍)

D(,﹣);

綜上,點(diǎn)D的坐標(biāo)為,或(,﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某景區(qū)的兩個(gè)景點(diǎn)A、B處于同一水平地面上、一架無人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MNAB在同一鉛直平面內(nèi),當(dāng)無人機(jī)飛行至C處時(shí)、測得景點(diǎn)A的俯角為45°,景點(diǎn)B的俯角為30°,此時(shí)C到地面的距離CD100米,則兩景點(diǎn)A、B間的距離為__米(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)B是線段AD上一點(diǎn),△ABC和△BDE分別是等邊三角形,連接AECD

1)求證:AECD;

2)如圖2,點(diǎn)P、Q分別是AECD的中點(diǎn),試判斷△PBQ的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AB的垂直平分線MNAC于點(diǎn)D,交AB于點(diǎn)E

1)若∠A40°,求∠DBC的度數(shù);

2)若AE6,△CBD的周長為20,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在等邊的邊上,,射線于點(diǎn),點(diǎn)是射線上一動(dòng)點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),,則( )

A. 14B. 13C. 12D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】比較下列各對(duì)數(shù)的大。

1________;(2________;(3________;(4________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點(diǎn),向東為正方向,以1個(gè)單位長表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.

(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,邊長為10厘米,點(diǎn)EAB邊上,BE=6厘米.如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過 秒后,△BPE≌△CQP;

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPE與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鎮(zhèn)政府想了解李家莊 130 戶家庭的經(jīng)濟(jì)情況,從中隨機(jī)抽取了部分家庭進(jìn)行調(diào)查,獲得了他們的年收入(單位:萬元),并對(duì)數(shù)據(jù)(年收入)進(jìn)行整理、描述和分析.下面給出了部分信息.

a.被抽取的部分家庭年收入的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖如下(數(shù)據(jù)分組:0.9x1.3,1.3x1.7 1.7x2.1, 2.1x2.5, 2.5x2.9 , 2.9x3.3

b.家庭年收入在1.3x1.7 這一組的是: 1.3 1.3 1.4 1.5 1.6 1.6

根據(jù)以上信息,完成下列問題:

1)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

2)估計(jì)李家莊有多少戶家庭年收入不低于 1.5 萬元且不足 2.1 萬元?

查看答案和解析>>

同步練習(xí)冊(cè)答案