【題目】如圖,平行四邊形ABCD中,BD=AB,∠ABD=30°,將平行四邊形ABCD繞點(diǎn)A旋轉(zhuǎn)至平行四邊形AMNE的位置,使點(diǎn)E落在BD上, ME交AB于點(diǎn)O, 則的值是( )
A.B.C.D.
【答案】B
【解析】
過點(diǎn)E作EF⊥AB于點(diǎn)F,根據(jù)角度關(guān)系可以求出△AEF為等腰直角三角形,設(shè)EF=x,則AF=x,可求得,由△AOM∽△BOE,即可求出結(jié)果.
解:過點(diǎn)E作EF⊥AB于點(diǎn)F,如圖:
∵BD=AB,,
∴,
∵平行四邊形ABCD繞點(diǎn)A旋轉(zhuǎn)至平行四邊形AMNE的位置,
∴AB=AM,AD=AE,
∴,
∴,
∴,
∵EF⊥AB,
∴,
∴,
∴△AEF為等腰直角三角形,
∴EF=AF,
設(shè)EF=x,則AF=x,
在Rt△BEF中,,
∴,,
∵AM∥BE,
∴△AOM∽△BOE,
∴,
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班興趣小組對函數(shù)y=﹣x2+2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.
(1)自變量的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | ||
y | … | ﹣3 | 0 | 1 | 0 | 1 | 0 | ﹣3 | … |
(1)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分;
(2)觀察函數(shù)圖象,當(dāng)y隨x增大而減小時,則x的取值范圍是
(3)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點(diǎn),所以對應(yīng)方程﹣x2+2|x|=0有 個實(shí)數(shù)根;
②方程﹣x2+2|x|=﹣1有 個實(shí)數(shù)根;
③若關(guān)于x的方程﹣x2+2|x|=n有4個實(shí)數(shù)根,則n的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店專售一款電動牙刷,其成本為20元/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(元/支)之間存在如圖所示的關(guān)系.
(1)求y與x之間的函數(shù)關(guān)系式.
(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱“新冠肺炎”)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點(diǎn)E,∠D=2∠A.
(1)求證:CD是⊙O的切線;
(2)求證:DE=DC;
(3)若OD=5,CD=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD.
(1)若M,N是BD上兩點(diǎn),且BM=DN,AC=2OM,求證:四邊形AMCN是矩形;
(2)若∠BAD=120°,CD=4,AB⊥AC,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地下停車庫入口的設(shè)計(jì)示意圖,已知AB⊥BD,坡道AD的坡度i=1:2.4(指坡面的鉛直高度BD與水平寬度AB的比),AB=7.2 m,點(diǎn)C在BD上,BC=0.4 m,CE⊥AD.按規(guī)定,地下停車庫坡道口上方要張貼限高標(biāo)志,以便告知停車人車輛能否安全駛?cè),請根?jù)以上數(shù)據(jù),求出該地下停車庫限高CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長均為 1,線段 AB、DE 的端點(diǎn) A、B、D、E 均在小正方形的頂點(diǎn)上.
(1)在圖中畫一個以 AB 為一腰的等腰△ABC, 且tan ABC ,點(diǎn)C 在小正方形的頂點(diǎn)上;
(2)在圖中畫一個以 DE 為邊的平行四邊形 DEFG,且G 45° ,點(diǎn) F、G 均在小正方形的頂點(diǎn)上,連接 CG,請直接寫出線段 CG 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,已知AB=AC,延長CD至點(diǎn)E,使CE=BD,連結(jié)AE.
(1)求證:AD平分∠BDE;
(2)若AB∥CD,求證:AE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某縣2015年初中畢業(yè)生數(shù)學(xué)質(zhì)量檢測成績等級的分布情況,隨機(jī)抽取了該縣若干名初中畢業(yè)生的數(shù)學(xué)質(zhì)量檢測成績,按A,B,C,D四個等級進(jìn)行統(tǒng)計(jì)分析,并繪制了如下尚不完整的統(tǒng)計(jì)圖:
請根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次抽取的學(xué)生有 名;補(bǔ)全條形統(tǒng)計(jì)圖1;
(2)根據(jù)調(diào)查結(jié)果,請估計(jì)該縣1430名初中畢業(yè)生數(shù)學(xué)質(zhì)量檢測成績?yōu)?/span>A級的人數(shù)是
(3)某校A等級中有甲、乙、丙、丁4名學(xué)生成績并列第一,現(xiàn)在要從這4位學(xué)生中抽取2名學(xué)生在校進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,用列舉法求出恰好選中甲乙兩位學(xué)生的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com