【題目】已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于點(diǎn).
當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段和之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段和之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.
【答案】(1),證明見解析(2)
【解析】
(1)BM+DN=MN成立,證得B、E、M三點(diǎn)共線即可得到△AEM≌△ANM,從而證得ME=MN.
(2)DN-BM=MN.證明方法與(1)類似.
(1)BM+DN=MN成立.
證明:如圖,把△ADN繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△ABE,則可證得E、B、M三點(diǎn)共線.
∴∠EAM=90°-∠NAM=90°-45°=45°,
又∵∠NAM=45°,
∴在△AEM與△ANM中,
∴△AEM≌△ANM(SAS),
∴ME=MN,
∵ME=BE+BM=DN+BM,
∴DN+BM=MN;
(2)DN-BM=MN.
在線段DN上截取DQ=BM,如圖,
在△ADQ與△ABM中,
∵,
∴△ADQ≌△ABM(SAS),
∴∠DAQ=∠BAM,
∴∠QAN=∠MAN.
在△AMN和△AQN中,
∴△AMN≌△AQN(SAS),
∴MN=QN,
∴DN-BM=MN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織通報(bào)說,沙特阿拉伯報(bào)告新增5例中東呼吸系統(tǒng)綜合征冠狀病毒(新型冠狀病毒)確診病例.全球新型冠狀病毒確診病例已達(dá)176例,其中死亡74例.冠狀病毒顆粒的直徑60-200nm,平均直徑為100nm,新型冠狀病毒直徑為178nm,呈球形或橢圓形,具有多形性.如果1nm=10-9米,那么新型冠狀病毒的半徑約為( )米
A.1.00×10-7B.1.78×10-7C.8.90×10-8D.5.00×10-8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長線上一點(diǎn),過點(diǎn)D的直線交AC于E點(diǎn),且△AEF為等邊三角形.
(1)求證:△DFB是等腰三角形;
(2)若DA=AF,求證:CF⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于⊙,,∥交的延長線于點(diǎn).
(1)求證:是⊙的切線;
(2)若,.
①求的度數(shù);
②求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一座人行天橋示意圖,天橋離地面的高BC是10m,坡面AC的傾斜角∠CAB=45°,在距離A點(diǎn)12m處有一建筑物HQ.為方便行人過天橋,市政部門決定降低坡度,使新坡面CD的傾斜角∠CDB=37°,若新坡面下D處需留至少4m人行道,則該建筑物HQ是否需要拆除?請(qǐng)通過計(jì)算說明理由.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正確的結(jié)論是( 。
A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)和點(diǎn),與軸交于另一點(diǎn).
(1)求拋物線表達(dá)式;
(2)在第二象限的拋物線上有一點(diǎn),且點(diǎn)到線段的距離為,求點(diǎn)的坐標(biāo);
(3)矩形的邊在軸的正半軸,在第一象限,,,將矩形沿軸負(fù)方向平移,直線、分別交拋物線于、.問:是否存在實(shí)數(shù),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一個(gè)面積為150平方米的長方形養(yǎng)雞場,雞場的一邊靠墻(墻長18米),另三邊用竹籬笆圍成,在與墻平行的一邊,開一扇2米寬的門.如果竹籬笆的長為33米,求這個(gè)長方形養(yǎng)雞場與墻垂直的邊長是多少?與墻平行的邊長是多少?(列方程解答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com