【題目】已知:如圖,AM為⊙O的切線,A為切點(diǎn).過⊙O上一點(diǎn)B作BD⊥AM于點(diǎn)D,BD交⊙O于點(diǎn)C,OC平分∠AOB.
(1)求∠AOB的度數(shù);
(2)當(dāng)⊙O的半徑為4cm時(shí),求CD的長.
【答案】(1)∠AOB=120°;(2)EC=2.
【解析】
(1)由AM為圓O的切線,利用切線的性質(zhì)得到OA與AM垂直,再由BD與AM垂直,得到OA與BD平行,利用兩直線平行內(nèi)錯(cuò)角相等得到一對角相等;再由OC為角平分線得到一對角相等,以及OB=OC,利用等邊對等角得到一對角相等,然后利用等量代換得到∠BOC=∠OBC=∠OCB=60°,從而得出答案;
(2),過點(diǎn)O作OE⊥BD于點(diǎn)E,如圖,進(jìn)而得出四邊形OADE是矩形,再結(jié)合(1)的解答過程進(jìn)行推理,即可得出DC的長.
(1)∵AM為圓O的切線,
∴OA⊥AM,
∵BD⊥AM,
∴∠OAD=∠BDM=90°,
∴OA∥BD,
∴∠AOC=∠OCB,
∵OB=OC,
∴∠OBC=∠OCB,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∴∠BOC=∠OCB=∠OBC=60°,
∴∠AOB=120°;
(2)過點(diǎn)O作OE⊥BD于點(diǎn)E,
∵∠BOC=∠OCB=∠OBC=60°,
∴△OBC是等邊三角形,
∴BE=EC=2,
∵∠OED=∠EDA=∠OAD=90°,
∴四邊形OADE是矩形,
∴DE=OA=4,
∴EC=DC=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c(b,c均為常數(shù))的圖象經(jīng)過兩點(diǎn)A(2,0),B(0,﹣6).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)C(m,0)(m>2)在這個(gè)二次函數(shù)的圖象上,連接AB,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀對學(xué)生的成長有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表8.
請根據(jù)圖表中的信息,解答下列問題:
(1)表中的a=______,b=______,中位數(shù)落在________組,將頻數(shù)分布直方圖補(bǔ)全;
(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?
(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出2人向全校同學(xué)作讀書心得報(bào)告,請用畫樹狀圖或列表法求抽取的2名學(xué)生剛好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰RtABC中,,點(diǎn)P在以斜邊AB為直徑的半圓上,M為PC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長是( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△OAB中,OA=4,AB=5,點(diǎn)C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)(k≠0)的圖象經(jīng)過圓心P,則k=________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對角線OB的中點(diǎn),反比例函數(shù)()在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,且與AB、BC分別交于E、F兩點(diǎn),若四邊形BEDF的面積為4.5,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),直線經(jīng)過點(diǎn),與拋物線交于另一點(diǎn).已知,.
(1)求拋物線與直線的解析式;
(2)如圖1,若點(diǎn)是軸下方拋物線上一點(diǎn),過點(diǎn)作于點(diǎn),過點(diǎn)作軸交拋物線于點(diǎn),過點(diǎn)作軸于點(diǎn),為直線上一點(diǎn),且.點(diǎn)為第四象限內(nèi)一點(diǎn),且在直線上方,連接、、.記,.當(dāng)取得最大值時(shí),求出點(diǎn)的坐標(biāo),并求出此時(shí)的最小值.
(3)如圖2,將點(diǎn)沿直線方向平移13個(gè)長度單位到點(diǎn),過點(diǎn)作軸,交拋物線于點(diǎn).動(dòng)點(diǎn)為軸上一點(diǎn),連接、,再將沿直線翻折為(點(diǎn)、、、在同一平面內(nèi)),連接、、,當(dāng)為等腰三角形時(shí),請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為8,D、E兩點(diǎn)分別從頂點(diǎn)B、C出發(fā),沿邊BC、CA以1個(gè)單位/s、2個(gè)單位/s的速度向頂點(diǎn)C、A運(yùn)動(dòng),DE的垂直平分線交BC邊于F點(diǎn),若某時(shí)刻tan∠CDE= 時(shí),則線段CF的長度為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com