【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線x軸于點A、點A在點B的左邊,交y軸于點C,直線經(jīng)過點B,交y軸于點D,且

bc的值;

在第一象限,連接OPBP,若,求點P的坐標(biāo),并直接判斷點P是否在該拋物線上;

的條件下,連接PD,過點P,交拋物線于點F,點E為線段PF上一點,連接DEBEBEPD于點G,過點E,垂足為H,若,求的值.

【答案】1 ;(2,點P在拋物線上;(32.

【解析】

(1)直線y=kx-6k,令y=0,則B(6,0),便可求出點D、C的坐標(biāo),將BC代入拋物線中,即可求得bc的值;

(2)過點P,作軸于點L,過點B于點T,先求出點P的坐標(biāo)為(44),再代入拋物線進(jìn)行判斷即可;

(3)連接PC,過點DDMBE于點M,先證△PCD≌△PLB,再分別證四邊形EHKP、FDKP為矩形,求得=2.

解:如圖,直線經(jīng)過點B

,則,即

,,

,,點,

BC在拋物線上,

,解得:

函數(shù)表達(dá)式為:

如圖,過點P,作軸于點L,過點B于點T,

,

在第一象限,,

,

,

當(dāng)時,

故點P在拋物線上;

如圖,連接PC,

,

軸,

,

,

,

,

,

,

過點P于點K,連接DF,

,

四邊形EHKP為平行四邊形,

,四邊形EHKP為矩形,

,

,,

,

中,

,

,

過點D于點M,

,

,,

,,

,直線PFBD解析式中的k值相等,

,

聯(lián)立并解得:,即,

,

,,四邊形FDKP為平行四邊形,

四邊形FDKP為矩形,

,

,

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6個型號):

根據(jù)以上信息,解答下列問題:

1)該班共有   名學(xué)生;

2)補(bǔ)全條形統(tǒng)計圖;

3)該班學(xué)生所穿校服型號的眾數(shù)為   ,中位數(shù)為   ;

4)如果該校預(yù)計招收新生1500名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸于A、B兩點(AB的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點坐標(biāo)為D(﹣1,4).

(1)求A、B兩點的坐標(biāo);

(2)求拋物線的解析式;

(3)過點D作直線DEy軸,交x軸于點E,點P是拋物線上B、D兩點間的一個動點(點P不與B、D兩點重合),PA、PB與直線DE分別交于點F、G,當(dāng)點P運(yùn)動時,EF+EG是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,.從點 出發(fā),沿著運(yùn)動,速度為個單位/,在點運(yùn)動的過程中,以為圓心的圓始終與斜邊相切,設(shè)⊙的面積為,點的運(yùn)動時間為)(.

1)當(dāng)時, ;(用含的式子表示)

2)求的函數(shù)表達(dá)式;

3)在⊙P運(yùn)動過程中,當(dāng)⊙P與三角形ABC的另一邊也相切時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,,點E在邊CD上,且,關(guān)于AE所在的直線成對稱圖形以點A為中心,把順時針旋轉(zhuǎn),得到,連接GF,則線段GF的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南崗區(qū)某中學(xué)的王老師統(tǒng)計了本校九年一班學(xué)生參加體育達(dá)標(biāo)測試的報名情況,并把統(tǒng)計的數(shù)據(jù)繪制成了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.根據(jù)圖中提供的數(shù)據(jù)回答下列問題:

(1)該學(xué)校九年一班參加體育達(dá)標(biāo)測試的學(xué)生有多少人?

(2)補(bǔ)全條形統(tǒng)計圖的空缺部分;

(3)若該年級有1200名學(xué)生,估計該年級參加仰臥起坐達(dá)標(biāo)測試的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象分別交于第二、四象限的A,B兩點,點A的橫坐標(biāo)為

求反比例函數(shù)的表達(dá)式;

根據(jù)圖象回答:當(dāng)x取何值時,請直接寫出答案:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為12cm,點B,D之間的距離為16m,則線段AB的長為  

A. B. 10cmC. 20cmD. 12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀材料)“九宮圖”源于我國古代夏禹時期的“洛書”1所示,是世界上最早的矩陣,又稱“幻方”,用今天的數(shù)學(xué)符號翻譯出來,“洛書”就是一個三階“幻方”2所示

(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿足的條件是______;若圖3,是一個“幻方”,則______

查看答案和解析>>

同步練習(xí)冊答案