【題目】盈盈同學(xué)要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證

已知:如圖1,在四邊形ABCD,BC=AD,________________________

求證:________________________

(1)填空,補(bǔ)全已知和求證

(2)按盈盈的想法寫出證明

(3)用文字?jǐn)⑹鏊C命題的逆命題為________________________

【答案】 AB=CD 四邊形ABCD是平行四邊形 平行四邊形兩組對邊分別相等

【解析】分析:(1)根據(jù)題意,要利用兩組對邊相等證明平行四邊形,先找出題目命題中的已知為兩組對邊分別相等,即可求解,從命題兩組對邊分別相等的四邊形是平行四邊形中可知結(jié)論是四邊形是平行四邊形,根據(jù)圖形和命題中的結(jié)論即可求解,

(2)連接一組對角線,可利用邊邊邊定理證明兩三角形全等,根據(jù)全等三角形的性質(zhì)可得對應(yīng)角相等,再根據(jù)內(nèi)錯(cuò)角相等兩直線平行判定兩組線段平行,最后根據(jù)平行四邊形的定義即可證明四邊形是平行四邊形.

(3)根據(jù)逆命題的條件為原命題的結(jié)論,逆命題的結(jié)論為原命題的條件即可求解.

詳解:(1)AB=CD,四邊形ABCD是平行四邊形,

(2)證明:連接BD,

在△ABD和△CDB中,

,

∴△ABD≌△CDB(SSS),

∴∠ADB=DBC,ABD=CDB,

ABCD,ADCB,

∴四邊形ABCD是平行四邊形,

(3)平行四邊形兩組對邊分別相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先計(jì)算:

________,________________,

________=0.

根據(jù)計(jì)算結(jié)果,回答:

(1) 一定等于a嗎?如果不是,那么________;

(2)利用你總結(jié)的規(guī)律,計(jì)算:

①若x<2,則________;

________

(3)a,bc為三角形的三邊長,化簡:

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某運(yùn)算程序,該程序是循環(huán)迭代的一種根據(jù)該程序的指令,如果輸入的值是10,那么得到第1次輸出的值是5;把第1次輸出的值再次輸入,那么第2次輸出的值是6;把第2次輸出的值再次輸入,那么第3次輸出的值是3;…,第2018次輸出的值是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某月的月歷上圈出了相鄰的三個(gè)數(shù)a、b、c,并求出了它們的和為39,這三個(gè)數(shù)在月歷中的排布不可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是平面上的兩定點(diǎn),在平面上找一點(diǎn)C,使△ABC為等腰直角三角形,且點(diǎn)C為直角頂點(diǎn),這樣的點(diǎn)C有幾個(gè)?請用尺規(guī)作圖確定點(diǎn)C的位置,保留作圖跡并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 圖象如圖,以下結(jié)論,其中正確有( )個(gè):
①m<0;
②在每個(gè)分支上y隨x的增大而增大;
③若A(﹣1,a),點(diǎn)B(2,b)在圖象上,則a<b
④若P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上.

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,E是CD上一點(diǎn),DE:EC=1:3,連AE,BE,BD且AE,BD交于F,則SDEF:SEBF:SABF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當(dāng)點(diǎn)EAD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);

①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4(k﹣)=0.

(1)判斷這個(gè)一元二次方程的根的情況;

(2)若等腰三角形的一邊長為3,另兩條邊的長恰好是這個(gè)方程的兩個(gè)根,求這個(gè)等腰三角形的周長及面積.

查看答案和解析>>

同步練習(xí)冊答案