【題目】一輛貨車從百貨大樓出發(fā)負(fù)責(zé)送貨,向東走了 5 千米到達小明家,繼續(xù)向東走了 1.5 千米到達小紅家,然后向西走了 9.5 千米到達小剛家,最后返回百貨大樓.

(1)以百貨大樓為原點,向東為正方向,1 個單位長度表示 1 千米,請你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置.(小明家用點 A 表示,小紅家用點 B 表示,小剛家用點 C 表示)

(2)小明家與小剛家相距多遠?

(3)若貨車每千米耗油 0.6 升,那么這輛貨車此次送貨共耗油多少升?

【答案】(1)如圖所示見解析;(2)小明家與小剛家相距 8 千米;(3)這輛貨車此次送貨共耗油 11.4 升.

【解析】

(1)根據(jù)已知,以百貨大樓為原點,以向東為正方向,用 1 個單位長度表示 1 千米一輛貨車從百貨大樓出發(fā),向東走了 5 千米,到達小明家,繼續(xù)向東走了 1 .5 千米到達小紅家,然后西走了 9.5 千米,到達小剛家,最后返回百貨大樓,則小明家、小紅家和小剛家在數(shù)軸上的位置可知;

(2)用小明家的坐標(biāo)減去與小剛家的坐標(biāo)即可;

(3)這輛貨車一共行走的路程,實際上就是 5+1.5+9.5+3=19(千米,貨車從出發(fā)到結(jié)束行程共耗油量=貨車行駛每千米耗油量×貨車行駛所走的總路程.

(1)如圖所示:

(2)小明家與小剛家相距:5﹣(﹣3)=8(千米);

答:小明家與小剛家相距 8 千米;

(3)這輛貨車此次送貨共耗油:(5+1.5+9.5+3)×0.6=11.4(升).

答:這輛貨車此次送貨共耗油 11.4 升.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四個幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個面,9條棱,6個頂點,觀察圖形,填寫下面的空.

1)四棱柱有   個面,   條棱,   個頂點;

2)六棱柱有   個面,   條棱,   個頂點;

3)由此猜想n棱柱有   個面,   條棱,   個頂點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.

(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時,求PB的長;
②直接寫出旋轉(zhuǎn)過程中線段PB長的最小值與最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點C(0,-2),直線l:y=kx-2k無論k取何值,直線總過定點B,

(1)求定點B的坐標(biāo).

(2)如圖1,若點D為直線BC上(點(-1,-3)除外)一動點,過點Dx軸的垂線交y= - 3于點E,點F在直線BC上,距離D點為個單位,D點橫坐標(biāo)為t,ΔDEF的面積為S,求St函數(shù)關(guān)系式.

(3)若直線BC關(guān)于x軸對稱后再向上平移5個單位得到直線B1C1,如圖2,點G(1,a)H(6,b)是直線B1C1上兩點,點P(m,n)為第一象限內(nèi)(G、H兩點除外)的一點,,mn=6,直線PGPH為分別交y軸于點MN兩點,問線段OM、ON有什么數(shù)量關(guān)系,請證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:

每臺甲型收割機的租金

每臺乙型收割機的租金

A地區(qū)

1800

1600

B地區(qū)

1600

1200

(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求yx間的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設(shè)計出來;

(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿著過AB中點D的直線折疊,使點A落在BC邊上的A1處,稱為第1次操作,折痕DE到BC的距離記為h1 , 還原紙片后,再將△ADE沿著過AD中點D1的直線折疊,使點A落在DE邊上的A2處,稱為第2次操作,折痕D1E1到BC的距離記為h2;按上述方法不斷操作下去…,經(jīng)過第2017次操作后得到的折痕D2016E2016 , 到BC的距離記為h2017;若h1=1,則h2017的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題7)如圖,在RtABCACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=AC,AB、DE交于點F.

(1)判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;

(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 2﹣6sin30°﹣( 0+ +| |

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,請?zhí)骄浚?
(1)求證:△DFE是等腰直角三角形;
(2)四邊形CEDF的面積是否發(fā)生變化?若不變化,請求出面積.

查看答案和解析>>

同步練習(xí)冊答案