【題目】如圖,CDAB,BEAC,垂足分別為點D,E,BECD相交于點O.1=2,則圖中全等三角形共有( )

A. 4B. 3C. 2D. 5

【答案】A

【解析】

共有四對.分別為ADO≌△AEOADC≌△AEB,ABO≌△ACO,BOD≌△COE.做題時要從已知條件開始結(jié)合圖形利用全等的判定方法由易到難逐個尋找.

CDAB,BEAC,AO平分∠BAC

∴∠ADO=AEO=90°,∠DAO=EAO

AO=AO

∴△ADO≌△AEO;(AAS)

OD=OE,AD=AE

∵∠DOB=EOC,ODB=OEC=90°

∴△BOD≌△COE;(ASA)

BD=CE,OB=OC,∠B=C

AE=AD,DAC=CAB,ADC=AEB=90°

∴△ADC≌△AEB;(ASA)

AD=AE,BD=CE

AB=AC

OB=OC,AO=AO

∴△ABO≌△ACO.(SSS)

所以共有四對全等三角形。

故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形MNPQ放置在矩形ABCD中,使點MN分別在AB,AD邊上滑動,若MN=6PN=4,在滑動過程中,點A與點P的距離AP的最大值為( 。

A. 4 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點B6,0)的直線AB與直線OA相交于點A42),動點M在線段OA和射線AC上運動.

1)求直線AB的解析式.

2)求OAC的面積.

3)是否存在點M,使OMC的面積是OAC的面積的?若存在求出此時點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,最省事的辦法是( )

A. 帶①去B. 帶②去C. 帶③去D. 帶①和②去

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“陽光體育”活動的開展情況,從全校2000名學生中,隨機抽取部分學生進行問卷調(diào)查(每名學生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學生共有   人,并補全條形統(tǒng)計圖;

(2)在扇形統(tǒng)計圖中,m= ,n=   ,表示區(qū)域C的圓心角為  度;

(3)全校學生中喜歡籃球的人數(shù)大約有 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:線段AB20cm.

(1)如圖1,點P沿線段ABA點向B點以2厘米/秒運動,點Q沿線段BAB點向A點以3厘米/秒運動,經(jīng)過________秒,點P、Q兩點能相遇.

(2)如圖1,點P沿線段ABA點向B點以2厘米/秒運動,同時點Q沿線段BAB點向A點以3厘米/秒運動,問再經(jīng)過幾秒后P、Q相距5cm?

(3)如圖2,AO4cmPO2cm,∠POB60°,點P繞著點O60°/秒的速度逆時針旋轉(zhuǎn)一周停止,同時點Q沿直線BAB點向A點運動,假若點P、Q兩點能相遇,求點Q運動的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CBDC(或它們的延長線)于點M、N.當∠MAN繞點A旋轉(zhuǎn)到BM=DN時(如圖1),易證BM+DN=MN.

1)當∠MAN繞點A旋轉(zhuǎn)到BMDN時(如圖2),線段BM、DNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想.并加以證明.

2)當∠MAN繞點A旋轉(zhuǎn)到如圖3位置時,線段BMDNMN之間有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人參加某項體育訓練,近期五次測試成績得分情況如圖所示:

1)分別求出兩人得分的平均數(shù);

2)誰的方差較大?

3)根據(jù)圖表和(1)的計算,請你對甲、乙兩人的訓練成績作出評價.

查看答案和解析>>

同步練習冊答案