【題目】如圖,在平面直角坐標(biāo)系中,長方形的頂點在坐標(biāo)原點,頂點分別在軸,軸的正半軸上,為邊的中點,是邊上的一個動點,當(dāng)的周長最小時,點的坐標(biāo)為_________.

【答案】(1,0)

【解析】

作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,用待定系數(shù)法,求出直線CD′的解析式,然后求得與x軸的交點坐標(biāo)即可.

作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,

∵OB=4,OA=3,DOB的中點,

∴OD=2,則D的坐標(biāo)是(0,2),C的坐標(biāo)是(3,4),

∴D′的坐標(biāo)是(0,-2),

設(shè)直線CD′的解析式是:y=kx+b(k≠0),

解得:,

則直線的解析式是:y=2x-2,

在解析式中,令y=0,得到2x-2=0,

解得x=1,

E的坐標(biāo)為(1,0),

故答案為:(1,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,,

(1)如果點在底邊上且以的速度由點向點運動,同時點在腰上由點運動.

①如果點與點的運動速度相等,求經(jīng)過多少秒后;

②如果點與點的運動速度不相等,當(dāng)點的運動速度為多少時,能夠使全等?

(2)若點以②中的運動速度從點出發(fā),點速度從點同時出發(fā),都逆時針沿三邊運動,直接寫出當(dāng)點與點第一次相遇時的運動的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點P,且∠D+C=200°,則∠P=( )

A. 10 ° B .20 ° C .30° D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點B作BM⊥x軸,垂足為M,BM=OM,OB=2 ,點A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y= x2 x﹣ 與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.

(1)求直線AE的解析式;
(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當(dāng)△PCE的面積最大時,連接CD,CB,點K是線段CB的中點,點M是CP上的一點,點N是CD上的一點,求KM+MN+NK的最小值;
(3)點G是線段CE的中點,將拋物線y= x2 x﹣ 沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)與兩坐標(biāo)分別交于兩點,動點從原點出發(fā),以每秒2個單位長度的速度沿軸正方向運動,連接.設(shè)運動時間為 s.

(1)當(dāng)為何值時,的面積為6?

(2),作中邊上的高,當(dāng)為何值時,長為4?并直接寫出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在高速公路上行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中,錯誤的是( )

A. 5 min時汽車的速度是80 km/h

B. 從第3 min到第6 min,汽車行駛了4 km

C. 6 min9 min,汽車行駛了6 km

D. 從第9 min到第12 min,汽車一直在減速直到速度減為0 km/h

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知ABCD,AB//x軸,AB=6,點A的坐標(biāo)為(1,-4),點D的坐標(biāo)為(-3,4),點B在第四象限,點P是ABCD邊上的一個動點.

(1)若點P在邊BC上,PD=CD,求點P的坐標(biāo).
(2)若點P在邊AB,AD上,點P關(guān)于坐標(biāo)軸對稱的點Q落在直線y=x-1上,求點P的坐標(biāo).
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當(dāng)點M的對應(yīng)點落在坐標(biāo)軸上時,求點P的坐標(biāo)(直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案