【題目】如圖,一勘測人員從山腳點出發(fā),沿坡度為的坡面行至點處時,他的垂直高度上升了米;然后再從點處沿坡角為的坡面米/分鐘的速度到達山頂點時,用了分鐘.

(1)求點到點之間的水平距離;

(2)求山頂點處的垂直高度是多少米?(結(jié)果保留整數(shù))

【答案】1點與點間的水平距離為米;(2)山頂點處的垂直高度約為米.

【解析】

1)過點作于點,根據(jù)坡度為求出BF即可;

2)求出米,然后在中,利用正弦的定義求出AE即可解決問題.

解:(1)過點作于點,則點與點的水平距離,

的坡度是,

,

DF15米,

BF45米,即點與點間的水平距離為米;

2)在中,(),

(),

(),

答:點與點間的水平距離為米,山頂點處的垂直高度約為米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某童裝店購進一批20/件的童裝,由銷售經(jīng)驗知,每天的銷售量y(件)與銷售單價x(元)之間存在如圖的一次函數(shù)關(guān)系.

1)求yx之間的函數(shù)關(guān)系;

2)當(dāng)銷售單價定為多少時,每天可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在等邊中,,動點從點出發(fā),沿邊以每秒1個單位的速度向終點運動,同時動點從點出發(fā),以每秒2個單位的速度沿著方向運動.連結(jié),設(shè)點運動的時間秒.

1)用含的代數(shù)式表示線段的長.

2)當(dāng)時,求的值.

3)若的面積為,求之間的函數(shù)關(guān)系式.

4)如圖②,當(dāng)點、之間時,連結(jié),被分割成、,當(dāng)其中的某兩個三角形面積相等時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB是反比例函數(shù)yk0)圖象上的兩點,延長線段ABy軸于點C,且點B為線段AC中點,過點AADx軸于點D,點E為線段OD的三等分點,且OEDE.連接AE、BE,若SABE7,則k的值為( )

A.12B.10C.9D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)數(shù)學(xué)活動小組在學(xué)習(xí)了利用三角函數(shù)測高后,選定測量小河對岸一幢建筑物BC的高度,他們先在斜坡上的D處,測得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測得建筑物頂端B的仰角是60°,點E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰直角OAB的斜邊OBx軸上,且OB4,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點C,交AB于點D,則點D坐標是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三名快遞員某天的工作情況如圖所示,其中點,,的橫、縱坐標分別表示甲、乙、丙三名快遞員上午派送快遞所用的時間和件數(shù);點,,,的橫、縱坐標分別表示甲、乙、丙三名快遞員下午派送快遞所用的時間和件數(shù).有如下三個結(jié)論:①上午派送快遞所用時間最短的是甲;②下午派送快遞件數(shù)最多的是丙;③在這一天中派送快遞總件數(shù)最多的是乙.上述結(jié)論中,所有正確結(jié)論的序號是(

A. ①②B. ①③C. D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,CAB=60°,點O為斜邊AB上一點,且OA=2,以OA為半徑的OBC相切于D,與AC交于點E,連接AD

1)求線段CD的長;

2)求ORtABC重疊部分的面積.(結(jié)果保留準確值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)k使關(guān)于x的不等式組只有4個整數(shù)解,且使關(guān)于y的分式方程+1的解為正數(shù),則符合條件的所有整數(shù)k的積為(  )

A.2B.0C.3D.6

查看答案和解析>>

同步練習(xí)冊答案