【題目】如圖,在中,,,,動點從點出發(fā),沿方向勻速運動,速度為;同時,動點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動,另一個點也停止運動.設(shè)點,運動的時間是.過點作于點,連接,.
(1)為何值時,?
(2)設(shè)四邊形的面積為,試求出與之間的關(guān)系式;
(3)是否存在某一時刻,使得若存在,求出的值;若不存在,請說明理由;
(4)當為何值時,?
【答案】(1)當t=時,DE⊥AC;(2) ;(3)當t=時, ;(4)t=時,=
【解析】
(1)若DE⊥AC,則∠EDA=90°,易證△ADE∽△ABC,進而列出關(guān)于t的比例式,即可求解;
(2)由△CDF∽△CAB,得CF=,BF=8﹣,進而用割補法得到與之間的關(guān)系式,進而即可得到答案;
(3)根據(jù),列出關(guān)于t的方程,即可求解;
(4)過點E作EM⊥AC于點M,易證△AEM∽△ACB,從而得EM=,AM=,進而得DM=,根據(jù)當DM=ME時,=,列出關(guān)于t的方程,即可求解.
(1)∵∠B=,AB=6 cm,BC=8 cm,
∴AC=10cm,
若DE⊥AC,則∠EDA=90°,
∴∠EDA=∠B,
∵∠A=∠A,
∴△ADE∽△ABC,
∴,即,
∴t=,
答:當t=時,DE⊥AC;
(2)∵DF⊥BC,
∴∠DFC=90°,
∴∠DFC =∠B,
∵∠C=∠C,
∴△CDF∽△CAB,
∴, 即,
∴CF=,
∴BF=8﹣,
∴;
(3)若存在某一時刻t,使得,
根據(jù)題意得:,
解得:,
答:當t=時,;
(4)過點E作EM⊥AC于點M,則△AEM∽△ACB
∴=,
∴,
∴EM=,AM=,
∴DM=10-2t-=,
在Rt△DEM中,當DM=ME時,=,
∴,解得:t=
即:當t=時,=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0,a、b、c為常數(shù))上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:
x | …… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | …… |
y | …… | 4 | 4 | m | 0 | …… |
則下列結(jié)論中:①拋物線的對稱軸為直線x=﹣1;②m=;③當﹣4<x<2時,y<0;④方程ax2+bx+c﹣4=0的兩根分別是x1=﹣2,x2=0,其中正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請用學過的方法研究一類新函數(shù)(為常數(shù),)的圖象和性質(zhì).
(1)在給出的平面直角坐標系中畫出函數(shù)的圖象;
(2)對于函數(shù),當自變量的值增大時,函數(shù)值怎樣變化?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請用學過的方法研究一類新函數(shù)(為常數(shù),)的圖象和性質(zhì).
(1)在給出的平面直角坐標系中畫出函數(shù)的圖象;
(2)對于函數(shù),當自變量的值增大時,函數(shù)值怎樣變化?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點,M為AB中點、N為DE中點,連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結(jié)論;
(2)若CD=5,AC=12,求△PMN的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x=1,點B坐標為(﹣1,0),則下面的四個結(jié)論,其中正確的個數(shù)為( 。
①2a+b=0②4a﹣2b+c<0③ac>0④當y>0時,﹣1<x<4
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強中學生體質(zhì),籃球運球已列為銅陵市體育中考選考項目,某校學生不僅練習運球,還練習了投籃,下表是一名同學在罰球線上投籃的試驗結(jié)果,根據(jù)表中數(shù)據(jù),回答問題.
投籃次數(shù)(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次數(shù)(m) | 28 | 60 | 78 | 104 | 124 | 153 | 252 |
(1)估計這名同學投籃一次,投中的概率約是多少?(精確到0.1)
(2)根據(jù)此概率,估計這名同學投籃622次,投中的次數(shù)約是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com