平面上兩個(gè)不重合的等圓的位置關(guān)系不可能是________.(把所有不可能出現(xiàn)的情況都填上)

答案:內(nèi)含,內(nèi)切$內(nèi)切,內(nèi)含
解析:

兩個(gè)等圓的半徑相等,當(dāng)成為所謂的“內(nèi)含”或“內(nèi)切”關(guān)系時(shí),它們是重合的.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們所學(xué)的幾何知識(shí)可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問題有哪些?(直接寫出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時(shí)經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點(diǎn),弦DE精英家教網(wǎng)⊥AB于點(diǎn)F.請找出點(diǎn)C和點(diǎn)E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圓的有關(guān)概念:
(1)圓兩種定義方式:
(a)在一個(gè)平面內(nèi)線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓,固定的端點(diǎn)O叫做
圓心
圓心
.線段OA叫做
半徑
半徑

(b)圓是所有點(diǎn)到定點(diǎn)O的距離
等于
等于
定長r的點(diǎn)的集合.
(2)弦:連接圓上任意兩點(diǎn)的
線段
線段
叫做弦.(弦不一定是直徑,直徑一定是弦,直徑是圓中最長的弦);
(3)�。簣A上任意兩點(diǎn)間的部分叫
(弧的度數(shù)等于這條弧所對的圓心角的度數(shù),等于這條弧所對圓周角的兩倍)
(4)等�。涸谕瑘A與等圓中,能夠
完全重合
完全重合
的弧叫等弧.
(5)等圓:能夠
完全重合
完全重合
的兩個(gè)圓叫等圓,半徑
相等
相等
的兩個(gè)圓也叫等圓..

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,四邊形ABCD是由兩個(gè)全等的等腰直角三角形斜邊重合在一起組成的平面圖形.如圖2,點(diǎn)P是邊BC上一點(diǎn),PH⊥BC交BD于點(diǎn)H,連接AP交BD于點(diǎn)E,點(diǎn)F為DH中點(diǎn),連接AF.
(1)求證:四邊形ABCD為正方形;
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),∠PAF的大小是否會(huì)發(fā)生變化?若不變,請求出∠PAF的值;若變化,請說明理由;
(3)求證:BE2+DF2=EF2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是兩個(gè)等邊三角形拼成的四邊形.
(1)這個(gè)圖形是不是旋轉(zhuǎn)對稱圖形?是不是中心對稱圖形?若是,指出對稱中心.
(2)若△ACD旋轉(zhuǎn)后能與△ABC重合,那么圖形所在平面上可以作為旋轉(zhuǎn)中心的點(diǎn)共有幾個(gè)?請一一指出.

查看答案和解析>>

同步練習(xí)冊答案