【題目】如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點(diǎn)A為CD延長線上一點(diǎn),BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
【答案】(1)證明見解析(2)
【解析】解:(1)證明:如圖,連接OB,
∵BC=AB,∠CAB=30°,∴∠ACB=∠CAB=30°。
又∵OC=OB,∴∠CBO=∠ACB=30°。
∴∠AOB=∠CBO+∠ACB=60°。
在△ABO中,∠CAB=30°,∠AOB=60°,∴∠ABO=90°,即AB⊥OB。
∴AB為圓O的切線。
(2)∵OB=2,∠BOD=60°,
∴的長度=。
(1)連接OB,如圖所示,由BC=AB,利用等邊對(duì)等角得到一對(duì)角相等,由∠CAB的度數(shù)得出
∠ACB的度數(shù),再由OC=OB,利用等邊對(duì)等角得到一對(duì)角相等,確定出∠CBO,由外角的性質(zhì)求出∠AOB的度數(shù),在△AOB中,利用三角形的內(nèi)角和定理求出∠ABO為90°,可得出AB為圓O的切線。
(2)直接應(yīng)用弧長公式計(jì)算即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線分別交AB,AC于點(diǎn)D,E.
(1)若∠A=40°,求∠EBC的度數(shù);
(2)若AD=5,△EBC的周長為16,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=2,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個(gè)根為﹣;⑤拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<2<x2,且x1+x2>4,則y1>y2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=10,將矩形沿AC折疊,使點(diǎn)B與點(diǎn)E重合,AD與EC相交于點(diǎn)F.
(1)求證:AF=CF;
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在等腰直角△ABC中,∠BAC=90°,點(diǎn)D從點(diǎn)B出發(fā)沿射線BC方向移動(dòng).在AD右側(cè)以AD為腰作等腰直角△ADE,∠DAE=90°.連接CE.
(1)求證:△ACE≌△ABD;
(2)點(diǎn)D在移動(dòng)過程中,請(qǐng)猜想CE,CD,DE之間的數(shù)量關(guān)系,并說明理由;
(3)若AC=,當(dāng)CD=1時(shí),結(jié)合圖形,請(qǐng)直接寫出DE的長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D,E分別是△ABC的邊AB,BC上的點(diǎn),AB=3BD,BE=CE.設(shè)△ADF的面積為S1,△CEF的面積為S2,若,則S1-S2的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com