【題目】如圖,點D在△ABC的AB邊上,且∠ACD=∠A.
(1)作∠BDC的平分線DE,交BC于點E(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,判斷直線DE與直線AC的位置關(guān)系(不要求證明).
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當△DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE.
填空:① ∠AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關(guān)系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.
(3)探究發(fā)現(xiàn):
圖1中的△ACB和△DCE,在△DCE旋轉(zhuǎn)過程中當點A,D,E不在同一直線上時,設直線AD與BE相交于點O,試在備用圖中探索∠AOE的度數(shù),直接寫出結(jié)果,不必說明理由.
【答案】(1)60°.AD=BE;(2)AB=17;(3)∠AOE的度數(shù)是60°或120°.
【解析】試題分析:(1)由條件易證△ACD≌△BCE,從而得到:AD=BE,∠ADC=∠BEC.由點A,D,E在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).
(2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由△DCE為等腰直角三角形及CM為△DCE中DE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE.
(3)由(1)知△ACD≌△BCE,得∠CAD=∠CBE,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根據(jù)三角形的內(nèi)角和定理可知∠AOE=60°.
試題解析:(1)①∵△ACB和△DCE均為等邊三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE為等邊三角形,
∴∠CDE=∠CED=60°.
∵點A,D,E在同一直線上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC∠CED=60°.
故答案為:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案為:AD=BE.
(2)∵△ACB和△DCE均為等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
∴AD=BE=AE-DE=8,∠ADC=∠BEC,
∵△DCE為等腰直角三角形,
∴∠CDE=∠CED=45°.
∵點A,D,E在同一直線上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC∠CED=90°.
∴AB==17;
(3)由(1)知△ACD≌△BCE,
∴∠CAD=∠CBE,
∵∠CAB=∠CBA=60°,
∴∠OAB+∠OBA=120°
∴∠AOE=180°120°=60°,
同理求得∠AOB=60°,
∴∠AOE=120°,
∴∠AOE的度數(shù)是60°或120°.
點睛:本題考查了等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形全等的判定與性質(zhì)等知識,考查了運用已有的知識和經(jīng)驗解決問題的能力.
【題型】解答題
【結(jié)束】
26
【題目】如圖,直線MN:y=-x+b與x軸交于點M(4,0),與y軸交于點N,長方形ABCD的邊AB在x軸上,AB=2,AD=1.長方形ABCD由點A與點O重合的位置開始,以每秒1個單位長度的速度沿x軸正方向作勻速直線運動,當點A與點M重合時停止運動.設長方形運動的時間為t秒,長方形ABCD與△OMN重合部分的面積為S.
(1)求直線MN的解析式;
(2)當t=1時,請判斷點C是否在直線MN上,并說明理由;
(3)請求出當t為何值時,點D在直線MN上;
(4)直接寫出在整個運動過程中S與t的函數(shù)關(guān)系式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中, △ABC的三個頂點的位置如圖所示,點A'的坐標是
(-2,2), 現(xiàn)將△ABC平移,使點A變換為點A',點B′、C′分別是B、C的對應點。
(1)請畫出平移后的像△A'B'C'(不寫畫法) ,并直接寫出點B′、C′的坐標:
B′ ( ) 、C′ ( ) ;
(2)若△ABC 內(nèi)部一點P的坐標為(a,b),則點P 的對應點P ′的坐標是 ( ) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017 D2017的邊長是( )
A.( )2016
B.( )2017
C.( )2016
D.( )2017
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都為l.在方格紙中將三角形ABC經(jīng)過一次平移后得到三角形A'B'C’,圖中標出了點C的對應點C'.
(1)請畫出平移后的三角形A'B'C’;
(2)連接AA’,CC’,則這兩條線段之間的關(guān)系是 ;
(3)建立合適的平面直角坐標系,并寫出A'、B'、C'的坐標;
(4)三角形A'B'C'的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電力公司為鼓勵市民節(jié)約用電,采取按月用電量分段收費辦法.若某戶居民每月應交電費y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖所示),根據(jù)圖象解下列問題:
(1) 分別寫出當0≤x≤100和x>100時,y與x的函數(shù)關(guān)系式
(2) 利用函數(shù)關(guān)系式,說明電力公司采取的收費標準
(3) 若該用戶某月用電62度,則應繳費多少元?若該用戶某月繳費105元時,則該用戶該月用了多少度電?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(Ⅰ)如圖1,在等邊中,點是上的任意一點(不含端點, ),連結(jié),以為邊作等邊,并連結(jié).求證: .
(Ⅱ)【類比探究】
如圖2,在等邊中,若點是延長線上的任意一點(不含端點),其它條件不變,則是否還成立?若成立,請說明理由;若不成立,請寫出, , 三者間的數(shù)量關(guān)系,并給予證明.
(Ⅲ)【拓展延伸】
如圖3,在等腰中, ,點是上的任意一點(不含端點),連結(jié),以為邊作等腰,使,試探究與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點E是AB邊的中點,以AE為邊作正方形AEFG,連接DE,BG.
(1)發(fā)現(xiàn)
①線段DE、BG之間的數(shù)量關(guān)系是;
②直線DE、BG之間的位置關(guān)系是 .
(2)探究
如圖2,將正方形AEFG繞點A逆時針旋轉(zhuǎn),(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)應用
如圖3,將正方形AEFG繞點A逆時針旋轉(zhuǎn)一周,記直線DE與BG的交點為P,若AB=4,請直接寫出點P到CD所在直線距離的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com