在△ABC中,設(shè)BC=x,BC上的高為y,△ABC的面積等于4.?
(1)寫出y和x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;然后作出它的函數(shù)圖象;
(2)當(dāng)△ABC為等腰直角三角形時(shí),求出圖象上對應(yīng)點(diǎn)D、E的坐標(biāo);?
(3)求△DOE的面積.
(1)y=
8
x
,圖象(略)

(2)①當(dāng)∠A=90°時(shí),即
y=
8
x
y=
1
2
x

解得
x=4
y=2
即對應(yīng)點(diǎn)D的坐標(biāo)為(4,2)
②當(dāng)∠B=90°時(shí),即
y=
8
x
y=x
,
解得
x=2
2
y=2
2
,即對應(yīng)點(diǎn)E的坐標(biāo)為(2
2
,2
2


(3)分別過D、E作DM垂直x軸于M,EN垂直x軸于N,
S△DOE=S△EON+S梯形DENM-S△DOM
=
1
2
×2
2
×2
2
+
1
2
×(2+2
2
)(4-2
2
)-
1
2
×4×2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知雙曲線y1=
k
x
(k>0)
與直線y2=k'x交于A,B兩點(diǎn),點(diǎn)A在第一象限.試解答下列問題:
(1)若點(diǎn)A的坐標(biāo)為(4,2),則點(diǎn)B的坐標(biāo)為______;當(dāng)x滿足:______時(shí),y1>y2;
(2)過原點(diǎn)O作另一條直線l,交雙曲線y=
k
x
(k>0)
于P,Q兩點(diǎn),點(diǎn)P在第一象限,如圖2所示.
①四邊形APBQ一定是______;
②若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積;
③設(shè)點(diǎn)A、P的橫坐標(biāo)分別為m、n,四邊形APBQ可能是矩形嗎?若可能,求m,n應(yīng)滿足的條件;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

反比例函數(shù)y=
k
x
(k≠0)的圖象經(jīng)過P,如圖所示,根據(jù)圖象可知,反比例函數(shù)的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,反比例函數(shù)y=
k
x
的圖象經(jīng)過點(diǎn)P,則k=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過點(diǎn)P(-4,3)作x軸,y軸的垂線,分別交x軸,y軸于A、B兩點(diǎn),交雙曲線y=
k
x
(k≥2)于E、F兩點(diǎn).
(1)點(diǎn)E的坐標(biāo)是______,點(diǎn)F的坐標(biāo)是______;(均用含k的式子表示)
(2)判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
(3)記S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若沒有,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P是雙曲線y=-
12
x
(x<0)上一動(dòng)點(diǎn),過點(diǎn)P作x軸、y軸的垂線,分別交x軸、y軸于A、B兩點(diǎn),交雙曲線y=
6
x
于E、F兩點(diǎn).
(1)圖1中,四邊形PEOF的面積S1=______;
(2)圖2中,設(shè)P點(diǎn)坐標(biāo)為(-4,3).
①判斷EF與AB的位置關(guān)系,并證明你的結(jié)論;
②記S2=S△PEF-S△OEF,求S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知三角形的面積為30cm2,一邊長為acm,這邊上的高為hcm.
(1)寫出a與h的函數(shù)關(guān)系式.
(2)在坐標(biāo)系中畫出此函數(shù)的簡圖.
(3)若h=10cm,求a的長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=x+
1
x
的圖象如圖所示,對該函數(shù)的性質(zhì)的論斷:
①該函數(shù)的圖象是中心對稱圖形;
②當(dāng)x>0時(shí),該函數(shù)在x=1時(shí)取得最小值;
③當(dāng)x>1時(shí),y隨x的增大而減。
④y的值不可能為-1,其中一定正確的有______.(填寫編號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

三角形的面積為12cm2,這時(shí)底邊上的高ycm底邊xcm之間的函數(shù)關(guān)系用圖象表示大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案