【題目】張老師在講解復(fù)習(xí)《圓》的內(nèi)容時(shí),用投影儀屏幕展示出如下內(nèi)容:

如圖,內(nèi)接于,直徑的長(zhǎng)為2,過(guò)點(diǎn)的切線交的延長(zhǎng)線于點(diǎn)

張老師讓同學(xué)們添加條件后,編制一道題目,并按要求完成下列填空.

1)在屏幕內(nèi)容中添加條件,則的長(zhǎng)為______

2)以下是小明、小聰?shù)膶?duì)話:

小明:我加的條件是,就可以求出的長(zhǎng)

小聰:你這樣太簡(jiǎn)單了,我加的是,連結(jié),就可以證明全等.

參考上面對(duì)話,在屏幕內(nèi)容中添加條件,編制一道題目(此題目不解答,可以添線、添字母).______

【答案】3 ,求的長(zhǎng)

【解析】

(1)連接OC,如圖,利用切線的性質(zhì)得∠OCD=90°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OD=2,然后計(jì)算OA+OD即可;
(2)添加∠DCB=30°,求ACAC的長(zhǎng),利用圓周角定理得到∠ACB=90°,再證明∠A=DCB=30°,然后根據(jù)含30°的直角三角形三邊的關(guān)系求AC的長(zhǎng).

解:(1)連接OC,如圖,

CD為切線,
OCCD,
∴∠OCD=90°,
∵∠D=30°,
OD=2OC=2,
AD=AO+OD=1+2=3
(2)添加∠DCB=30°,求AC的長(zhǎng),
解:∵AB為直徑,
∴∠ACB=90°,
∵∠ACO+OCB=90°,∠OCB+DCB=90°,
∴∠ACO=DCB
∵∠ACO=A,
∴∠A=DCB=30°,
RtACB中,BC= AB=1
AC= =

故答案為3;,求的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線ya與拋物線交于A、B兩點(diǎn)(AB的左側(cè)),交y軸于點(diǎn)C

(1)若AB4,求a的值

(2)若拋物線上存在點(diǎn)D(不與A、B重合),使,求a的取值范圍

(3)如圖2,直線ykx2與拋物線交于點(diǎn)E、F,點(diǎn)P是拋物線上的動(dòng)點(diǎn),延長(zhǎng)PE、PF分別交直線y=-2M、N兩點(diǎn),MNy軸于Q點(diǎn),求QM·QN的值。

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.

(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;

(2)若方程的兩根恰好是一個(gè)矩形兩鄰邊的長(zhǎng),且k=2,求該矩形的對(duì)角線L的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勤儉節(jié)約一直是中華民族的傳統(tǒng)美德,某中學(xué)校團(tuán)委準(zhǔn)備以“勤儉節(jié)約”為主題開展一次演講比賽,為此先對(duì)同學(xué)們每月零花錢的數(shù)額進(jìn)行一些了解,隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.

組別

分組(單位:元)

人數(shù)

A

0x30

4

B

30x60

a

C

60x90

b

D

90x120

8

E

120x150

2

根據(jù)以上圖表,解答下列問(wèn)題:

1)填空:這次調(diào)查的同學(xué)共有   人,a+b   ,m   

2)求扇形統(tǒng)計(jì)圖中扇形B的圓心角的度數(shù);

3)該校共有1200名學(xué)生,請(qǐng)估計(jì)每月零花錢的數(shù)額在60x90范圍的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在△ADC中,∠ADC90°,以DC為直徑作半圓⊙O,交邊AC于點(diǎn)F,點(diǎn)BCD的延長(zhǎng)線上,連接BF,交AD于點(diǎn)E,∠BED2C

1)求證:BF是⊙O的切線;

2)若BFFC,,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的AB兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(- 3,4),點(diǎn)B的坐標(biāo)為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點(diǎn)P,使△APC是直角三角形. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某博物館每周都吸引大量中外游客前來(lái)參觀,如果游客過(guò)多,對(duì)館中的珍貴文物會(huì)產(chǎn)生不利影響,但同時(shí)考慮到文物的修繕和保存費(fèi)用問(wèn)題,還要保證一定的門票收入,因此,博物館采取了漲浮門票價(jià)格的方法來(lái)控制參觀人數(shù),在該方法實(shí)施過(guò)程中發(fā)現(xiàn):每周參觀人數(shù)與票價(jià)之間存在著如圖所示的一次函數(shù)關(guān)系.在這種情況下,如果要保證每周萬(wàn)元的門票收入,那么每周應(yīng)限定參觀人數(shù)是多少?門票價(jià)格應(yīng)是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙?cè)诹尕暄笊系囊坏漓n麗的風(fēng)景.大橋主體工程隧道的東、西兩端各設(shè)置了一個(gè)海中人工島,來(lái)銜接橋梁和海底隧道西人工島上的A點(diǎn)和東人工島上的B點(diǎn)間的距離約為5.6千米,點(diǎn)C是與西人工島相連的大橋上的一點(diǎn),A,B,C在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達(dá)P點(diǎn)時(shí)觀測(cè)兩個(gè)人工島,分別測(cè)得與觀光船航向的夾角∠DPA=18°,∠DPB=53°,求此時(shí)觀光船到大橋AC段的距離的長(zhǎng)

參考數(shù)據(jù):°°,°,°,°,°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段BP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4PB=5,PC=3,則四邊形APBQ的面積為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案