【題目】某供暖部門為了解市民對2016年供暖情況的滿意程度,對若干戶市民進(jìn)行了抽樣調(diào)查(把市民對供暖情況的滿意程度分為三個層次,A層次:滿意;B層次:比較滿意;C層次:不滿意),將調(diào)查結(jié)果繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖.

(1)請計算多少戶市民參加了此次抽樣調(diào)查,并補全條形統(tǒng)計圖.

(2)根據(jù)抽樣調(diào)查結(jié)果,請估計16000戶市民中大約有多少戶對2016年的供暖情況滿意和比較滿意.(包括A層次和B層次)

【答案】(1)1000,150(2)估計16000戶市民中大約有13600戶對2016年的供暖情況滿意和比較滿意

【解析】試題分析:1)根據(jù)總?cè)藬?shù)=所占人數(shù)÷百分比,求出C層次戶數(shù)畫出條形圖即可解決問題;

2)用樣本估計總體的思想即可解決問題.

試題解析:(1)總?cè)藬?shù)=250÷25%=1000(戶).

C層次戶數(shù)為1000﹣600﹣250=150(戶),

補全條形統(tǒng)計圖如下:

216000×0.25+=13600(戶),

答:估計16000戶市民中大約有13600戶對2016年的供暖情況滿意和比較滿意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點AD為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點M、N;第二步,連結(jié)MN,分別交AB、AC于點E、F;第三步,連結(jié)DE、DF..若BD=6AF=4,CD=3,則BE的長是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,線段ABx軸的正半軸上移動,AB=1,過點ABy軸的平行線分別交函數(shù)y1=(x>0)y2=(x>0)的圖像于C、ED、F,設(shè)點A的橫坐標(biāo)為m (m>0).

1)連接OC、OE,則OCE面積為 ;

2)連接CF,當(dāng)m為何值時,四邊形ABFC是矩形;

3)連接CD、EF,判斷四邊形CDFE能否是平行四邊形,并說明理由;

4)如圖2,經(jīng)過點By軸上點G0,4)作直線BG交直線AC于點H,若點H的縱坐標(biāo)為正整數(shù),請求出整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1中,40°,,在上取一點,延長,使得在第2中,;在上取一點,延長,使得在第3中,,按此做法進(jìn)行下去,第3個三角形中以為頂點的內(nèi)角的度數(shù)為_____; 個三角形中以為頂點的內(nèi)角的度數(shù)為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC和△DEF都是等腰直角三角形,BAC=EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合。將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,射線EF與線段AB相交于點G,與射線CA相交于點Q.

(1)求證:△BPE∽△CEQ

(2)求證:DP平分∠BPQ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD 中,以點 A 為圓心,AB 長為半徑畫弧交 AD 于點 F,再分別以點 BF 為圓心,大于BF 的相同長為半徑畫弧,兩弧交于點 P,連接 AP 并延長交 BC 于點 E,連接 EF

1)根據(jù)以上尺規(guī)作圖的過程,證明四邊形 ABEF 是菱形;

2)若菱形 ABEF 的邊長為 2AE 2 ,求菱形 ABEF 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】出租車司機張師傅某天上午營運全是在東西向的長江路上進(jìn)行的,如果向東為正,向西為負(fù),這天上午他行車?yán)锍蹋▎挝唬?/span>km)如下:

.

.最后一名乘客送到目的地,出租車在東面還是西面?在多少千米處?

.請你幫張師傅算一下,這天上午他一共行駛了多少里程?

.若每千米耗油0.1L,則這天上午張師傅一共用了多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于第一、三象限內(nèi)的兩點,與軸交于點 .

⑴求該反比例函數(shù)和一次函數(shù)的解析式;

⑵在軸上找一點使最大,求的最大值及點的坐標(biāo);

⑶直接寫出當(dāng)時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, △ABC的三個頂點的位置如圖所示,點A'的坐標(biāo)是

(-2,2, 現(xiàn)將ABC平移,使點A變換為點A',B、C分別是B、C的對應(yīng)點。

1)請畫出平移后的像A'B'C'(不寫畫法) ,并直接寫出點BC的坐標(biāo):

B ( ) 、C ( )

2)若ABC 內(nèi)部一點P的坐標(biāo)為(a,b),則點P   的對應(yīng)點P 的坐標(biāo)是 ( ) .

查看答案和解析>>

同步練習(xí)冊答案