【題目】如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點在線段CA上,從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒.運動時間為t秒.
(1)當(dāng)t為何值時,∠AMN=∠ANM?
(2)當(dāng)t為何值時,△AMN的面積最大?并求出這個最大值.
【答案】(1)4(2)當(dāng)t=6時,△AMN的面積最大,最大值為
【解析】解:(1)∵從C向A運動,速度為1米/秒;同時N點在線段AB上,從A向B運動,速度為2米/秒,運動時間為t秒,
∴AM=12﹣t,AN=2t。
∵∠AMN=∠ANM,∴AM=AN,即12﹣t=2t,解得:t=4 秒。
∴當(dāng)t為4時,∠AMN=∠ANM。
(2)如圖作NH⊥AC于H,
∴∠NHA=∠C=90°。∴NH∥BC。
∴△ANH∽△ABC。
∴,即。∴NH=。
∴。
∴當(dāng)t=6時,△AMN的面積最大,最大值為。
(1)用t表示出AM和AN的值,根據(jù)AM=AN,得到關(guān)于t的方程求得t值即可。
(2)作NH⊥AC于H,證得△ANH∽△ABC,從而得到比例式,然后用t表示出NH,從而計算其面積得到有關(guān)t的二次函數(shù)求最值即可。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=8,AD=10,點E為BC上一點,將△ABE沿AE折疊,使點B落在長方形內(nèi)點F處,且DF=6.
(1)試說明:△ADF是直角三角形;
(2)求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的頂點都在正方形網(wǎng)格的格點上,點
(1)作出關(guān)于軸的對稱圖形,點的對應(yīng)點的坐標(biāo)為___________.
(2)作出關(guān)于軸的對稱圖形,點的對應(yīng)點的坐標(biāo)為__________.
(3)觀察圖形,說一說點和點的坐標(biāo)有什么特點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩條公路、交予點,在公路旁有一學(xué)校,與點的距離為,點(學(xué)校)到公路的距離為.一大貨車從點出發(fā),行駛在公路上,汽車周圍范圍內(nèi)有噪音影響.
(1)貨車開過學(xué)校是否受噪音影響?為什么?
(2)若汽車速度為,則學(xué)校受噪音影響多少秒鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們把對角線互相垂直的四邊形叫做和美四邊形,對角線交點稱為和美四邊形的中心.
(1)寫出一種你學(xué)過的和美四邊形_________;
(2)如圖1,點O是和美四邊形ABCD的中心,E,F,G、H分別是邊AB,BC,CD,DA的中點,連接OE,OF,OG,OH,記四邊形AEOH,BEOF,CGOF,DHOG的面積為,用等式表示的數(shù)量關(guān)系(無需說明理由).
(3)如圖2,四邊形ABCD是和美四邊形,若AB=3,BC=2,CD=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進一批單價為16元的日用品,銷售一段時間后,為了獲取更多利潤, 商店決定提高銷售價格,經(jīng)試驗發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件; 若按每件25元的價格銷售時,每月能賣210件.假定每月銷售件數(shù)y(件)是價格x( 元/件)的一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式;
(2)在商品不積壓,且不考慮其他因素的條件下,問銷售價格為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少?(總利潤=總收入-總成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年中考理化實驗操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學(xué)試驗(用紙簽D、E、F表示)中各抽取一個實驗操作進行考試,小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.用列表或畫樹狀圖的方法求小剛抽到物理實驗B和化學(xué)實驗F的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京廣高速鐵路工程指揮部,要對某路段工程進行招標(biāo),接到了甲、乙兩個工程隊的投標(biāo)書.從投標(biāo)書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.4萬元,乙隊每天的施工費用為5.6萬元.工程預(yù)算的施工費用為500萬元.為縮短工期并高效完成工程,擬安排預(yù)算的施工費用是否夠用?若不夠用,需追加預(yù)算多少萬元?請給出你的判斷并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com