一個任意三角形有________條對稱軸,等腰三角形有________條對稱軸,任意平行四邊形有________條對稱軸,菱形有________條對稱軸,正方形有________條對稱軸,圓有________條對稱軸.

答案:
解析:

0,1,0,2,4,無數(shù)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

26、閱讀:
我們約定,若一個三角形(記為△M1)是由另一個三角形(記為△M)通過一次平移得到的,稱為△M經(jīng)過T變換得到△M1,若一個三角形(記為△M2)是由另一個三角形(記為△M)通過繞其任一邊中點旋轉(zhuǎn)180°得到的,稱為△M經(jīng)過R變換得到△M2.以下所有操作中每一個三角形只可進行一次變換,且變換均是從圖中的基本三角形△A開始的,通過變換形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
操作:
(1)如圖,由△A經(jīng)過R變換得到△A1,又由△A1經(jīng)過
R
變換得到△A2,再由△A2經(jīng)過
T
變換得到△A3,形成了一個大三角形,記作△B.
(2)在下圖的基礎(chǔ)上繼續(xù)變換下去得到△C,若△C的一條邊上恰有3個基本三角形(指有一條邊在該邊上的基本三角形),則△C含有
9
個基本三角形;若△C的一條邊上恰有11個基本三角形,則△C含有
121
個基本三角形;
應(yīng)用:
(3)若△A是正三角形,你認為通過以上兩種變換可以得到的正多邊形是
正六邊形,正三角形
;
(4)請你用兩次R變換和一次T變換構(gòu)成一個四邊形,畫出示意圖,并仿照下圖作出標記.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

相傳2500年前,古希臘著名數(shù)學(xué)家畢達哥拉斯從朋友家的地磚鋪成的地面上找到了直角三角形三邊的關(guān)系:“任意直角三角形,都有兩直角邊的平方和等于斜邊的平方.”這就是著名的“勾股定理”.它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系(如圖).
根據(jù)“勾股定理”,我們就可以由已知兩條直角邊的長來求斜邊的長.
如:a=1,b=1時,12+12=c2,c=
12+12
=
2
;a=1,b=2時,c=
12+22
=
5
;

請你根據(jù)上述材料,完成下列問題:
(1)a=1,b=3時,c=
10
10

(2)如果斜邊長為
13
,則直角邊為正整數(shù)
2
2
,
3
3

(3)請你在數(shù)軸上畫出表示
13
的點(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

下列命題錯誤的是


  1. A.
    三個點確定一個圓
  2. B.
    三角形有且只有一個外接圓
  3. C.
    三角形的內(nèi)心是三角形三條內(nèi)角平分線的交點
  4. D.
    三角形的外心是三角形中任意兩邊垂直平分線的交點

查看答案和解析>>

同步練習(xí)冊答案