【題目】感知:如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點P在BC邊上,當∠APD=90°時,可知△ABP∽△PCD.(不要求證明)
探究:如圖②,在四邊形ABCD中,點P在BC邊上,當∠B=∠C=∠APD時,求證:△ABP∽△PCD.
拓展:如圖③,在△ABC中,點P是邊BC的中點,點D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,BD=4,則DE的長為 .
【答案】探究:見解析;拓展:.
【解析】
感知:先判斷出∠BAP=∠DPC,進而得出結(jié)論;
探究:根據(jù)兩角相等,兩三角形相似,進而得出結(jié)論;
拓展:利用△BDP∽△CPE得出比例式求出CE,結(jié)合三角形內(nèi)角和定理證得AC⊥AB且AC=AB;最后在直角△ADE中利用勾股定理來求DE的長度.
解:感知:∵∠APD=90°,
∴∠APB+∠DPC=90°,
∵∠B=90°,
∴∠APB+∠BAP=90°,
∴∠BAP=∠DPC,
∵AB∥CD,∠B=90°,
∴∠C=∠B=90°,
∴△ABP∽△PCD;
探究:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,
∴∠BAP+∠B=∠APD+∠CPD.
∵∠B=∠APD,
∴∠BAP=∠CPD.
∵∠B=∠C,
∴△ABP∽△PCD;
拓展:同探究的方法得出,△BDP∽△CPE,
∴,
∵點P是邊BC的中點,
∴BP=CP=3,
∵BD=4,
∴,
∴CE=,
∵∠B=∠C=45°,
∴∠A=180°﹣∠B﹣∠C=90°,
即AC⊥AB且AC=AB=6,
∴AE=AC﹣CE=6﹣=,AD=AB﹣BD=6﹣4=2,
在Rt△ADE中,DE===.
故答案是:.
科目:初中數(shù)學 來源: 題型:
【題目】關于反比例函數(shù),下列說法不正確的是( 。
A. 函數(shù)圖象分別位于第一、第三象限
B. 當x>0時,y隨x的增大而減小
C. 若點A(x1,y1),B(x2,y2)都在函數(shù)圖象上,且x1<x2,則y1>y2
D. 函數(shù)圖象經(jīng)過點(1,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點,分別連接AC、CD、AD.
(1)求拋物線的函數(shù)表達式以及頂點D的坐標;
(2)在拋物線上取一點P(不與點C重合),并分別連接PA、PD,當△PAD的面積與△ACD的面積相等時,求點P的坐標;
(3)將(1)中所求得的拋物線沿A、D所在的直線平移,平移后點A的對應點為A′,點C的對應點為C′,點D的對應點為D′,當四邊形AA′C′C是菱形時,求此時平移后的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)要求,解答下列問題:
(1)①方程x2-x-2 =0的解為__________
②方程x2-2x-3 =0的解為_______
③方程x2-3x-4 =0的解為_______
...
(2)根據(jù)以上方程特征及其解得特征,請猜想:
①方程x2-9x-10=0的解為_______
②請用配方法解方程x2-9x-10=0,以驗證猜想結(jié)論的正確性。
(3)應用:關于x的方程______的解為x1 =-1,x2 =n+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交,其頂點坐標為,下列結(jié)論:①;②;③;④方程有兩個相等的實數(shù)根,其中正確的結(jié)論是________.(只填序號即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C1;
(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.
(1)請完成如下操作:
①以點O為坐標原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;、诟鶕(jù)圖形提供的信息,標出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請在(1)的基礎上,完成下列填空:
①寫出點的坐標:C 、D ;
②⊙D的半徑= (結(jié)果保留根號);
③若E(7,0),試判斷直線EC與⊙D的位置關系,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某倉儲中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4 m,B,C在同一水平面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運送,當BF=3.5 m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1 m)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com