已知,△ABD≌△ABC,∠C=∠D=100°,∠CBD=30°,那∠DAB=________°.

答案:65
解析:

65°


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知∠ABC=∠ABD,請你補(bǔ)充一個條件:
BC=BD
∠C=∠D
∠BAC=∠BAD
,使得△ABC≌△ABD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB:y=
12
x+1
分別與x軸、y軸交于點A、點B;直線CD:y=x+b分別與x軸、y軸交于點C、點D.直線AB與CD相交于點P.已知S△ABD=4,則點P的坐標(biāo)是
(8,5)
(8,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•哈爾濱)已知:△ABD和△CBD關(guān)于直線BD對稱(點A的對稱點是點C),點E,F(xiàn)分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,連接AF,AE,AE交BD于點G.
(1)如圖1,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時,M是線段AG上一點,連接BM,ED,MF,MF的延長線交ED于點N,∠MBF=
1
2
∠BAF,AF=
2
3
AD,試探究FM和FN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD是等腰三角形ABC的底邊AC上的高線,DE∥BC,交AB于點E.則△BDE是等腰三角形.請在解答過程中的括號里填寫理由.
解:∵AB=BC,BD⊥AC(已知)∴∠ABD=∠DBC
(三線合一)
(三線合一)

∵DE∥BC(已知),∴∠DBC=∠EDB,
(兩直線平行,內(nèi)錯角相等)
(兩直線平行,內(nèi)錯角相等)

∴∠ABD=∠EDB,∴BE=DE
(等角對等邊)
(等角對等邊)

∴△EDB是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
(1)如圖1,試說明:△ABD≌△AEC;
(2)如圖1,若∠CAD=35°,∠E=56°,∠D=40°,
①試求:∠EOB的度數(shù);
②將△AEC繞點A逆時針旋轉(zhuǎn)α度(0°<α<180°),問當(dāng)α為多少度時,直線CE分別與△ABD的三邊所在的直線垂直?(請直接寫出答案).
(3)如圖2將△AEC繞點A順時針旋轉(zhuǎn)后得到△ABD,并使點D,E,A三點在同一條直線上,若AD=2AB,連接CD,若△CDE的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案