如圖1,□ABCD中,對角線BD⊥AB,AB=5,AD邊上的高為.等腰直角△EFG中,EF=4, ∠EGF=45°,且△EFG與□ABCD位于直線AD的同側,點F與點D重合,GF與AD在同一直線上.△EFG從點D出發(fā)以每秒1個單位的速度沿射線DA方向平移,當點G到點A時停止運動;同時點P也從點A出發(fā),以每秒3個單位的速度沿折線AD→DC方向運動,到達點C時停止運動,設運動的時間為t.
(1)求的長度;
(2)在平移的過程中,記與相互重疊的面積為,請直接寫出面積與運動時間的函數(shù)關系式,并寫出的取值范圍;
(3)如圖2,在運動的過程中,若線段與線段交于點,連接.是否存在這樣的時間,使得為等腰三角形?若存在,求出對應的值;若不存在,請說明理由.
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線y=x+m與拋物線y=x2-2x+l交于不同的兩點M、N(點M在點N的左側).
(1)設拋物線的頂點為B,對稱軸l與直線y=x+m的交點為C,連結BM、BN,若S△MBC=S△NBC,求直線MN的解析式;
(2)在(1)條件下,已知點P(t,0)為x軸上的一個動點,
①若△PMN為直角三角形,求點P的坐標.
②若∠MPN>90°,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1)。
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形,若存在,求點P的坐標,若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知關于的一元二次方程.
(1)求證:方程總有兩個實數(shù)根;
(2)若m為整數(shù),當此方程有兩個互不相等的負整數(shù)根時,求m的值;
(3)在(2)的條件下,設拋物線與x軸交點為A、B(點B在點A的右側),與y軸交于點C.點O為坐標原點,點P在直線BC上,且OP=BC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,直線分別與x軸,y軸交于過點A,B,點C是第一象限內(nèi)的一點,且AB=AC,AB⊥AC,拋物線經(jīng)過A,C兩點,與軸的另一交點為D.
(1)求此拋物線的解析式;
(2)判斷直線AB與CD的位置關系,并證明你的結論;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,B,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
心理學家通過實驗發(fā)現(xiàn):初中學生聽講的注意力隨時間變化,講課開始時,學生注意力逐漸增強,中間有一段平穩(wěn)狀態(tài),隨后開始分散.學生注意力指標數(shù)y隨時間表t(分鐘)變化的函數(shù)圖象如下.當0≤t≤10時,圖像是拋物線的一部分,當10≤t≤20時和20≤t≤40時,圖像是線段。
(1)當0≤t≤10時,求注意力指標數(shù)y與時間t的函數(shù)關系式;
(2)一道數(shù)學探究題需要講解24分鐘,問老師能否經(jīng)過恰當安排,使學生在探究這道題時,注意力指標數(shù)不低于45?請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知某商品的進價為每件40元,售價是每件60元,每星期可賣出300件。市場調查反映:如調整價格 ,每漲價一元,每星期要少賣出10件。該商品應定價為多少元時,商場能獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔,李明按照相關政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈,已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數(shù):y=-10x+500.
⑴李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
⑵設李明獲得的利潤為W(元),當銷售單價定為多少元時,每月可獲得最大利潤?
⑶物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元,如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點A(-1,0),對稱軸為過點(1,0)且與y軸平行的直線.
(1)求點B的坐標
(2)求該二次函數(shù)的關系式;
(3)結合圖象,解答下列問題:
①當x取什么值時,該函數(shù)的圖象在x軸上方?
②當-1<x<2時,求函數(shù)y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com