【題目】某中學(xué)九年級學(xué)生步行到郊外春游.一班的學(xué)生組成前隊(duì),速度為4km/h ,二班的學(xué)生組成后隊(duì),速度為6km/h .前隊(duì)出發(fā)1h 后,后隊(duì)才出發(fā),同時(shí),后隊(duì)派一名聯(lián)絡(luò)員騎自行車在兩隊(duì)之間不間斷地來回進(jìn)行聯(lián)絡(luò),他騎車的速度為12km/h.若不計(jì)隊(duì)伍的長度,如圖,折線ABC ,A-B-C 分別表示后隊(duì),聯(lián)絡(luò)員在行進(jìn)過程中,離前隊(duì)的路程 與后隊(duì)行進(jìn)時(shí)間x(h) 之間的部分函數(shù)圖象.
(1) 求線段AB 對應(yīng)的函數(shù)關(guān)系式;
(2) 求點(diǎn)E 的坐標(biāo),并說明它的實(shí)際意義;
(3) 聯(lián)絡(luò)員從出發(fā)到他折返后第一次與后隊(duì)相遇的過程中,當(dāng)x 為何值時(shí),他離前隊(duì)的路程與他離后隊(duì)的路程相等?
【答案】(1)y1=-2x+4.(2)點(diǎn)E的實(shí)際意義為聯(lián)絡(luò)員出發(fā)h后與后隊(duì)相遇,此時(shí)他與前隊(duì)的距離為 km.(3)聯(lián)絡(luò)員從出發(fā)到他折返后第一次與后隊(duì)相遇的過程中,當(dāng)x為或 時(shí),他離前隊(duì)的路程與他離后隊(duì)的路程相等.
【解析】
(1)設(shè)線段AB對應(yīng)的函數(shù)關(guān)系式為=kx+b.由待定系數(shù)求出其解即可;
(2)根據(jù)路程=速度×?xí)r間就可以表示出DE的解析式,再求出與的交點(diǎn)坐標(biāo)就是點(diǎn)E的坐標(biāo);
(3)設(shè)AD的關(guān)系式為,求出解析式,再分兩種情況建立方程求出其解即可.
(1)設(shè)線段AB對應(yīng)的函數(shù)關(guān)系式為=kx+b.根據(jù)題意,得
解得
∴
(2)根據(jù)題意,得線段DE對應(yīng)的函數(shù)關(guān)系式為
=16x8.
當(dāng)時(shí),2x+4=16x8,解得x= .
把x=代入中,得,即點(diǎn)E的坐標(biāo)為 .
點(diǎn)E的實(shí)際意義為聯(lián)絡(luò)員出發(fā)h后與后隊(duì)相遇,此時(shí)他與前隊(duì)的距離為km;
(3)根據(jù)題意,得線段AD對應(yīng)的函數(shù)關(guān)系式為,由題意,得
解得:
∴
分兩種情況:
①
②
綜上,聯(lián)絡(luò)員從出發(fā)到他折返后第一次與后隊(duì)相遇的過程中,當(dāng)x為或時(shí),他離前隊(duì)的路程與他離后隊(duì)的路程相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將拋物線平移后,新拋物線經(jīng)過原拋物線的頂點(diǎn),新拋物線與軸正半軸交于點(diǎn),聯(lián)結(jié),,設(shè)新拋物線與軸的另一交點(diǎn)是,新拋物線的頂點(diǎn)是.
(1)求點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)在新拋物線上,聯(lián)結(jié),如果平分,求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,將拋物線沿軸左右平移,點(diǎn)的對應(yīng)點(diǎn)為,當(dāng)和相似時(shí),請直接寫出平移后得到拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當(dāng)t= 分鐘時(shí)甲乙兩人相遇,甲的速度為 米/分鐘,乙的速度為 米/分鐘;
(2)圖中點(diǎn)A的坐標(biāo)為 ;
(3)求線段AB所直線的函數(shù)表達(dá)式;
(4)在整個過程中,何時(shí)兩人相距400米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對給定的一個x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最。ú槐貙懗鲞^程),并寫出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線過點(diǎn),,點(diǎn)為直線下方拋物線上一動點(diǎn),為拋物線頂點(diǎn),拋物線對稱軸與直線交于點(diǎn).
(1)求拋物線的表達(dá)式與頂點(diǎn)的坐標(biāo);
(2)在直線上是否存在點(diǎn),使得,,,為頂點(diǎn)的四邊形是平行四邊形,若存在,請求出點(diǎn)坐標(biāo);
(3)在軸上是否存在點(diǎn),使?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,直線l經(jīng)過點(diǎn)A,且垂直于AB,分別與AB、AC相交于點(diǎn)M,N.直線l從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動,當(dāng)直線l經(jīng)過點(diǎn)B時(shí)停止運(yùn)動,若運(yùn)動過程中△AMN的面積是y(cm2),直線l的運(yùn)動時(shí)間是x(s)則y與x之間函數(shù)關(guān)系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)拱頂高離水面2m時(shí),水面寬4m,水面下降2.5m,水面寬度增加( 。
A. 1 m B. 2 m C. 3 m D. 6 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1、圖2,在圓O中,,,將弦AB與弧AB所圍成的弓形包括邊界的陰影部分繞點(diǎn)B順時(shí)針旋轉(zhuǎn)度,點(diǎn)A的對應(yīng)點(diǎn)是.
點(diǎn)O到線段AB的距離是______;______;點(diǎn)O落在陰影部分包括邊界時(shí),的取值范圍是______;
如圖3,線段B與優(yōu)弧ACB的交點(diǎn)是D,當(dāng)時(shí),說明點(diǎn)D在AO的延長線上;
當(dāng)直線與圓O相切時(shí),求的值并求此時(shí)點(diǎn)運(yùn)動路徑的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四張質(zhì)地完全相同的卡片,正面分別寫有四個角度,現(xiàn)將這四張卡片洗勻后,背面朝上.
(1)若從中任意抽取--張,求抽到銳角卡片的概宰;
(2)若從中任意抽取兩張,求抽到的兩張角度恰好互補(bǔ)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com