精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線y=-x+3y軸交于點A,與反比例函數y=(k≠0)的圖象交于點C,過點CCBx軸于點B,AO=3BO,則反比例函數的解析式為( )

A. y= B. y=- C. y= D. y=-

【答案】D

【解析】

根據一次函數圖象上點的坐標特征可求出點A的坐標,結合AO=3BO可得出BO的長度,進而可得出點C的坐標,再利用反比例函數圖象上點的坐標特征即可求出反比例函數的解析式

∵直線y=-x+3y軸交于點A,

A(0,3),即OA=3,

AO=3BO,

OB=1,

∴點C的橫坐標為-1,

∵點C在直線y=-x+3上,

∴當x=-1時,y=-(-1)+3=4,

∴點C的坐標為(-1,4).

∴反比例函數的解析式為:y=,

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀材料:以下是我們教科書中的一段內容,請仔細閱讀,并解答有關問題.

公元前3世紀,古希臘學家阿基米德發(fā)現:若杠桿上的兩物體與支點的距離與其重量成反比,則杠桿平衡,后來人們把它歸納為杠桿原理,通俗地說,杠桿原理為:

阻力×阻力臂=動力×動力臂

(問題解決)

若工人師傅欲用撬棍動一塊大石頭,已知阻力和阻力臂不變,分別為1500N0.4m

1)動力FN)與動力臂lm)有怎樣的函數關系?當動力臂為1.5m時,撬動石頭需要多大的力?

2)若想使動力FN)不超過題(1)中所用力的一半,則動力臂至少要加長多少?

(數學思考)

3)請用數學知識解釋:我們使用棍,當阻力與阻力臂一定時,為什么動力臂越長越省力.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象與拋物線y=-3x2的開口大小和方向都相同,并且在x軸上截得的線段長為3.又知圖象過(0,6)點,則該二次函數的表達式為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與邊CD相切于點D,點B在⊙O上,連接OB.

(1)求證:DE=OE;

(2)若CDAB,求證:BC是⊙O的切線;

(3)在(2)的條件下,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,ACBCAB=8.點P從點A出發(fā),以每秒2個單位長度的速度沿邊AB向點B運動.過點PPDAB交折線ACCB于點D,以PD為邊在PD右側做正方形PDEF.設正方形PDEFABC重疊部分圖形的面積為S,點P的運動時間為t秒(0<t<4).

(1)當點D在邊AC上時,正方形PDEF的邊長為   (用含t的代數式表示).

(2)當點E落在邊BC上時,求t的值.

(3)當點D在邊AC上時,求St之間的函數關系式.

(4)作射線PE交邊BC于點G,連結DF.當DF=4EG時,直接寫出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數yx2x

(1)在平面直角坐標系內,畫出該二次函數的圖象;

(2)根據圖象寫出:x   時,y>0;

0<x<4時,y的取值范圍為   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,二次函數yax22ax3aa0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D

1)求頂點D的坐標(用含a的代數式表示);

2)若以AD為直徑的圓經過點C

①求拋物線的函數關系式;

②如圖2,點Ey軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、MN分別和點O、B、E對應),并且點M、N都在拋物線上,作MFx軸于點F,若線段MFBF12,求點MN的坐標;

③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示是一個直角三角形的苗圃,由一個正方形花壇和兩塊直角三角形的草皮組成.如果兩個直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為( 。┢椒矫祝

A. 3 B. 9 C. 12 D. 24

查看答案和解析>>

同步練習冊答案