【題目】規(guī)定一種新運算:a*b=a+b,ab=a﹣b,其中a、b為有理數(shù),如a=2,b=1時,a*b=2+1=3,ab=2﹣1=1根據(jù)以上的運算法則化簡:a2b*3ab+5a2b4ab,并求出當(dāng)a=5,b=3時多項式的值.

【答案】6a2b﹣ab,435

【解析】

根據(jù)新定義首先把它轉(zhuǎn)化為有理數(shù)的混合運算,再進一步根據(jù)有理數(shù)的混合運算順序進行計算即可.

a*ba+babab,

a2b*3ab+5a2b4aba2b+3ab+5a2b4ab,=6a2bab,

當(dāng)a5,b3時,原式=435

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接一個四邊形的各邊中點,得到了一個矩形,則下列四邊形①平行四邊形;②菱形;③對角線互相垂直的四邊形;④對角線相等的四邊形,滿足條件的是( )
A.①③④
B.②③
C.①②④
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】星光櫥具店購進電飯煲和電壓鍋兩種電器進行銷售,其進價與售價如表:

進價(元/個)

售價(元/個)

電飯煲

200

250

電壓鍋

160

200


(1)一季度,櫥具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問櫥具店在該買賣中賺了多少錢?
(2)為了滿足市場需求,二季度櫥具店決定用不超過9000元的資金采購電飯煲和電壓鍋共50個,且電飯煲的數(shù)量不少于23個,問櫥具店有哪幾種進貨方案?并說明理由;
(3)在(2)的條件下,請你通過計算判斷,哪種進貨方案櫥具店賺錢最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,D、E分別是AB、AC的中點,連DE,若DE=6,則BC的長是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在一個樣本中,50個數(shù)據(jù)分別落在5個組內(nèi),第一,二,三,四,五組數(shù)據(jù)的個數(shù)分別是2,8,15,20,5,則第四組頻數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個一次函數(shù)y=k1x+b1和y=k2x+b2滿足k1=k2,b1b2,那么稱這兩個一次函數(shù)為“平行一次函數(shù)”.如圖,已知函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點,一次函數(shù)y=kx+b與y=﹣2x+4是“平行一次函數(shù)”

(1)若函數(shù)y=kx+b的圖象過點(3,1),求b的值;

(2)若函數(shù)y=kx+b的圖象與兩坐標(biāo)軸圍成的三角形和AOB構(gòu)成位似圖形,位似中心為原點,位似比為1:2,求函數(shù)y=kx+b的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,我們在2016年7月的日歷中標(biāo)出一個十字星,并計算它的“十字差”(將十字星左右兩數(shù),上下兩數(shù)分別相乘再將所得的積作差,稱為該十字星的“十字差”).該十字星的十字差為12×14﹣6×20=48,再選擇其它位置的十字星,可以發(fā)現(xiàn)“十字差”仍為48.
(1)如圖2,將正整數(shù)依次填入5列的長方形數(shù)表中,探究不同位置十字星的“十字差”,可以發(fā)現(xiàn)相應(yīng)的“十字差”也是一個定值,則這個定值為
(2)若將正整數(shù)依次填入6列的長方形數(shù)表中,不同位置十字星的“十字差”是一個定值嗎?如果是,請求出這個定值;如果不是,請說明理由.
(3)若將正整數(shù)依次填入k列的長方形數(shù)表中(k≥3),繼續(xù)前面的探究,可以發(fā)現(xiàn)相應(yīng)“十字差”為與列數(shù)k有關(guān)的定值,請用k表示出這個定值,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=90°,∠COD=30°.
(1)如圖1,當(dāng)點O、A、C在同一條直線上時,∠BOD的度數(shù)是;

(2)將∠COD從圖1的位置開始,繞點O逆時針方向旋轉(zhuǎn)n°(即∠AOC=n°),且0<n<180.
①如果∠COD的一邊與∠AOB的一邊垂直,則n=
②當(dāng)60<n<90時(如圖2),作射線OM平分∠AOC,射線ON平分∠BOD,試求∠MON的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠A的兩邊與∠B的兩邊分別平行,且∠A的度數(shù)比∠B的度數(shù)的3倍少40°,則∠B的度數(shù)為(  )

A. 20° B. 55° C. 20°55° D. 75°

查看答案和解析>>

同步練習(xí)冊答案