【題目】如圖,ADBC,BC=2AD,E為BC的中點(diǎn),R為DC的中點(diǎn),BR交AE于點(diǎn)P,則EP:AP=

【答案】

【解析】

試題分析:先由BC=2AD,BE=EC=BC,得出BE=EC=AD,根據(jù)ADBC,由一組對(duì)邊平行且相等的四邊形是平行四邊形可得四邊形ADCE是平行四邊形,那么EA=CD,EACD.得出BEP∽△BCR,于是EP=CR,而CR=CD,那么EP=CD=EA,然后根據(jù)比例的性質(zhì)即可求出答案即可.

解:BC=2AD,BE=EC=BC,

BE=EC=AD

在等腰梯形ABCD中,ADBC,

四邊形ADCE是平行四邊形,

EA=CD,EACD

∴△BEP∽△BCR

BE=EC=BC,

EP=CR,

CR=CD,

EP=CD=EA,

=,

EP:AP=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x﹣y=2,xy=3,則x2y﹣xy2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的兩條邊長(zhǎng)是37,那么第三條邊長(zhǎng)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對(duì)稱(chēng)軸是x=﹣且經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)①直接寫(xiě)出點(diǎn)B的坐標(biāo);②求拋物線解析式.

(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

(3)拋物線上是否存在點(diǎn)M,過(guò)點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)等腰三角形的邊長(zhǎng)分別是4cm和9cm,則它的周長(zhǎng)是________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點(diǎn)在AD邊上以每秒1cm的速度從A向D運(yùn)動(dòng),點(diǎn)Q在BC邊上,以每秒4cm的速度從C點(diǎn)出發(fā),在CB間往返運(yùn)動(dòng),二點(diǎn)同時(shí)出發(fā),待P點(diǎn)到達(dá)D點(diǎn)為止,在這段時(shí)間內(nèi),線段PQ有( )次平行于AB.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是( )

A. 三角形的內(nèi)心到三角形的三個(gè)頂點(diǎn)的距離相等 B. 三點(diǎn)確定一個(gè)圓

C. 垂直于半徑的直線一定是這個(gè)圓的切線 D. 任何三角形有且只有一個(gè)內(nèi)切圓

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一枚質(zhì)地均勻的正方體骰子,六個(gè)面分別寫(xiě)有1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面朝上的那一個(gè)數(shù)字”.先后拋擲這枚骰子兩次,得到的數(shù)字分別記為b和c,則當(dāng)x>﹣3時(shí),函數(shù)y=x2+bx+c隨x的增大而增大的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你寫(xiě)出一個(gè)有一根為1的一元二次方程: .(答案不唯一)

查看答案和解析>>

同步練習(xí)冊(cè)答案