若f(x)=,則方程f(4x)=x的根是   
【答案】分析:由f(4x)=x建立方程,進(jìn)行化簡(jiǎn)配方可解得方程的根.
解答:解:∵f(4x)=x,
(x≠0)
化簡(jiǎn),得4x2-4x+1=(2x-1)2=0,
解得 ,
故答案為:
點(diǎn)評(píng):本題考查了方程根的問(wèn)題,屬于基礎(chǔ)問(wèn)題,培養(yǎng)學(xué)生計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、在方程ax2+bx+c=0(a≠0)中,若有a-b+c=0,則方程必有一根為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于一元二次方程ax2+bx+c=0(a≠0),下列說(shuō)法:
①若
a
c
+
b
c
=-1
,則方程ax2+bx+c=0一定有一根是x=1;
②若c=a3,b=2a2,則方程ax2+bx+c=0有兩個(gè)相等的實(shí)數(shù)根;
③若a<0,b<0,c>0,則方程cx2+bx+a=0必有實(shí)數(shù)根;
④若ab-bc=0,且
a
c
<-1
,則方程cx2+bx+a=0的兩實(shí)數(shù)一定互為相反數(shù).其中正確的結(jié)論是( 。
A、①②③④B、①②④
C、①③D、②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

給出四個(gè)命題:①整系數(shù)方程ax2+bx+c=0(a≠0)中,若△為一個(gè)完全平方數(shù),則方程必有有理根;②整系數(shù)方程ax2+bx+c=0(a≠0)中,若方程有有理數(shù)根,則△為完全平方數(shù);③無(wú)理數(shù)系數(shù)方程ax2+bx+c=0(a≠0)的根只能是無(wú)理數(shù);④若a、b、c均為奇數(shù),則方程ax2+bx+c=0沒(méi)有有理數(shù)根,其中真命題是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于一元二次方程ax2+bx+c=0,下列說(shuō)法正確的有( 。
①若a:b:c=1:2:1,則方程必有兩個(gè)相等的實(shí)根;②若x1=2,x2=-1是方程的兩根,則b=-a,c=-2a;
③若b=3a,c=2a,則方程兩個(gè)根必為x1=-1,x2=-2;④若方程一個(gè)實(shí)根為x=c,則必有ac=-b-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于一元二次方程ax2+bx+c=0(a≠0),下列說(shuō)法:
①b=a+c時(shí),方程ax2+bx+c=0一定有實(shí)數(shù)根;
②若a、c異號(hào),則方程ax2+bx+c=0一定有實(shí)數(shù)根;
③b2-5ac>0時(shí)方程ax2+bx+c=0一定有兩個(gè)不相等的實(shí)數(shù)根;
④若方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,則方程cx2+bx+a=0也一定有兩個(gè)不相等實(shí)數(shù)根.
其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案