【題目】一項(xiàng)工程,乙隊(duì)單獨(dú)完成比甲隊(duì)單獨(dú)完成需多用16天,甲隊(duì)單獨(dú)做3天的工作量乙隊(duì)單獨(dú)做需要5天才能完成.

1)甲,乙兩隊(duì)單獨(dú)完成此項(xiàng)工程各需幾天?

2)該項(xiàng)工程先由甲,乙兩隊(duì)合作,再由甲隊(duì)單獨(dú)完成,若完成此項(xiàng)工程不超過(guò)18天,甲乙兩隊(duì)至少合作幾天?

【答案】(1)甲隊(duì)單獨(dú)完成此項(xiàng)工程需24天,乙隊(duì)單獨(dú)完成此項(xiàng)工程需40天;(2)甲,乙兩隊(duì)至少合作10天.

【解析】

1)設(shè)甲隊(duì)單獨(dú)完成此項(xiàng)工程需天,然后根據(jù)題意列出分式方程,解方程并檢驗(yàn)即可得出答案;

2)設(shè)甲,乙兩隊(duì)合作天,然后根據(jù)甲的工作量與工作效率得出工作時(shí)間,再根據(jù)甲自始至終都在工作即可確定工作時(shí)間,從而列出不等式,然后解不等式即可.

解:(1)設(shè)甲隊(duì)單獨(dú)完成此項(xiàng)工程需天,則乙隊(duì)單獨(dú)完成此項(xiàng)工程需()天.

解得

經(jīng)檢驗(yàn)是原方程的解

答:甲隊(duì)單獨(dú)完成此項(xiàng)工程需24天,乙隊(duì)單獨(dú)完成此項(xiàng)工程需40天.

2)設(shè)甲,乙兩隊(duì)合作

解得

答:甲,乙兩隊(duì)至少合作10天.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC為等邊三角形,BDABC的高,延長(zhǎng)BCE,使CE=CD=1,連接DE,則BE=___________,BDE=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE與AC交于點(diǎn)M,EF與AC交于點(diǎn)N,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),伴隨點(diǎn)P的運(yùn)動(dòng),矩形PEFG在射線(xiàn)AB上滑動(dòng);動(dòng)點(diǎn)K從點(diǎn)P出發(fā)沿折線(xiàn)PE﹣﹣EF以每秒1個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng).點(diǎn)P、K同時(shí)開(kāi)始運(yùn)動(dòng),當(dāng)點(diǎn)K到達(dá)點(diǎn)F時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、K運(yùn)動(dòng)的時(shí)間是t秒(t>0).

(1)當(dāng)t=1時(shí),KE=_____,EN=_____

(2)當(dāng)t為何值時(shí),△APM的面積與△MNE的面積相等?

(3)當(dāng)點(diǎn)K到達(dá)點(diǎn)N時(shí),求出t的值;

(4)當(dāng)t為何值時(shí),△PKB是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,點(diǎn)F是射線(xiàn)DC上一動(dòng)點(diǎn)(不與C,D重合).連接AF并延長(zhǎng)交直線(xiàn)BC于點(diǎn)E,交BDH,連接CH,過(guò)點(diǎn)CCGHCAE于點(diǎn)G

1)若點(diǎn)F在邊CD上,如圖1

①證明:∠DAH=DCH;

②猜想:△GFC的形狀并說(shuō)明理由.

2)取DF中點(diǎn)M,連接MG.若MG=2.5,正方形邊長(zhǎng)為4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某書(shū)店現(xiàn)有資金7700元,計(jì)劃全部用于購(gòu)進(jìn)甲、乙、丙三種圖書(shū)共20套,其中甲種圖書(shū)每套500元,乙種圖書(shū)每套400元,丙種圖書(shū)每套250元.書(shū)店將甲、乙、丙三種圖書(shū)的售價(jià)分別定為每套550元,430元,310元.設(shè)書(shū)店購(gòu)進(jìn)甲種圖書(shū)x套,乙種圖書(shū)y套,請(qǐng)解答下列問(wèn)題:

(1)請(qǐng)求出y與x的函數(shù)關(guān)系式(不需要寫(xiě)出自變量的取值范圍);

(2)若書(shū)店購(gòu)進(jìn)甲、乙兩種圖書(shū)均不少于1套,則該書(shū)店有幾種進(jìn)貨方案?

(3)在(1)和(2)的條件下,根據(jù)市場(chǎng)調(diào)查,書(shū)店決定將三種圖書(shū)的售價(jià)作如下調(diào)整:甲種圖書(shū)的售價(jià)不變,乙種圖書(shū)的售價(jià)上調(diào)a(a為正整數(shù))元,丙種圖書(shū)的售價(jià)下調(diào)a元,這樣三種圖書(shū)全部售出后,所獲得的利潤(rùn)比(2)中某方案的利潤(rùn)多出20元,請(qǐng)直接寫(xiě)出書(shū)店是按哪種方案進(jìn)的貨及a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將進(jìn)貨價(jià)為30元的臺(tái)燈以40元的價(jià)格售出,平均每月能售出600個(gè),經(jīng)調(diào)查表明,這種臺(tái)燈的售價(jià)每上漲1元,其銷(xiāo)量就減少10個(gè),市場(chǎng)規(guī)定此臺(tái)燈售價(jià)不得超過(guò)60元,為了實(shí)現(xiàn)銷(xiāo)售這種臺(tái)燈平均每月10000元的銷(xiāo)售利潤(rùn),售價(jià)應(yīng)定為多少元?這時(shí)售出臺(tái)燈多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.下面有三個(gè)推斷:某次實(shí)驗(yàn)投擲次數(shù)是500,計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,則該次試驗(yàn)“釘尖向上”的頻率是0.616;隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的概率一定是0.620.其中合理的是( 。

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店銷(xiāo)售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,健民體育活動(dòng)中心從該網(wǎng)店購(gòu)買(mǎi)了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.

1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?

2)根據(jù)健民體育活動(dòng)中心消費(fèi)者的需求量,活動(dòng)中心決定用不超過(guò)2550元錢(qián)購(gòu)進(jìn)甲、乙兩種羽毛球共50筒,那么最多可以購(gòu)進(jìn)多少筒甲種羽毛球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下面的材料,然后解答問(wèn)題.通過(guò)計(jì)算,發(fā)現(xiàn)方程:

的解為;

的解為,;

的解為,;

……

1)觀(guān)察上述方程的解,猜想關(guān)于的方程的解是_____

2)根據(jù)上面的規(guī)律,猜想關(guān)于的方程的解是_______

3)類(lèi)似地,關(guān)于的方程的解是______

4)請(qǐng)利用上述規(guī)律求關(guān)于的方程的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案