如果成立,則a的取值范圍是      


 a 

【考點(diǎn)】分式的基本性質(zhì).

【分析】根據(jù)分式的分子分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變,可得答案.

【解答】解:成立,得

2a﹣1≠0.

解得a≠,

故答案為:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖.

根據(jù)圖中提供的信息,解答下列問題:

(1)補(bǔ)全頻數(shù)分布直方圖;

(2)求扇形統(tǒng)計(jì)圖中m的值和“E”組對應(yīng)的圓心角度數(shù);

(3)請估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某學(xué)校為了解本校學(xué)生課外閱讀的情況,從全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成統(tǒng)計(jì)表.已知該校全體學(xué)生人數(shù)為1200人,由此可以估計(jì)每周課外閱讀時(shí)間在1~2(不含1)小時(shí)的學(xué)生有      人.  

每周課外閱讀時(shí)間(小時(shí))

0~1

1~2

(不含1)

2~3

(不含2)

超過3

人  數(shù)

7

10

14

19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 “低碳環(huán)保,你我同行”.兩年來,揚(yáng)州市區(qū)的公共自行車給市民出行帶來切實(shí)方便.電視臺記者在某區(qū)街頭隨機(jī)選取了市民進(jìn)行調(diào)查,調(diào)查的問題是“您大概多久使用一次公共自行車?”,將本次調(diào)查結(jié)果歸為四種情況:A.每天都用;B.經(jīng)常使用;C.偶爾使用;D.從未使用.將這次調(diào)查情況整理并繪制如下兩幅統(tǒng)計(jì)圖如圖2:

根據(jù)圖中的信息,解答下列問題:

(1)本次活動共有      位市民參與調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中A項(xiàng)所對應(yīng)的圓心角的度數(shù)為      

(4)根據(jù)統(tǒng)計(jì)結(jié)果,若該區(qū)有46萬市民,請估算每天都用公共自行車的市民約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某學(xué)習(xí)小組設(shè)計(jì)了一個(gè)摸球試驗(yàn),在袋中裝有黑,白兩種顏色的球,這些球的形狀大小質(zhì)地等完全相同,即除顏色外無其他差別.在看不到球的情況下,隨機(jī)從袋中摸出一個(gè)球,記下顏色,再把它放回,不斷重復(fù).下表是由試驗(yàn)得到的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)

100

200

300

400

500

600

摸到白球的次數(shù)

58

118

189

237

302

359

摸到白球的頻率

0.58

0.59

0.63

0.593

0.604

0.598

從這個(gè)袋中隨機(jī)摸出一個(gè)球,是白球的概率約為      .(結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點(diǎn)A是直線l外一點(diǎn),在l上取兩點(diǎn)B、C,分別以A、C為圓心,BC、AB長為半徑畫弧,兩弧交于點(diǎn)D,分別連接AB、AD、CD,則四邊形ABCD一定是( 。

A.平行四邊形     B.矩形  C.菱形 D.梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


實(shí)驗(yàn)室里,水平桌面上有甲、乙兩個(gè)圓柱形容器(容器足夠高),底面半徑之比為1∶2,用一個(gè)管子在甲、乙兩個(gè)容器的15厘米高度處連通(即管子底端離容器底15厘米).已知只有乙容器中有水,水位高2厘米,如圖所示.現(xiàn)同時(shí)向甲、乙兩個(gè)容器注水,平均每分鐘注入乙容器的水量是注入甲容器水量的k倍.開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中ak均為正整數(shù),當(dāng)甲、乙兩個(gè)容器的水位都到達(dá)連通管子的位置時(shí),停止注水.甲容器的水位有2次比

乙容器的水位高1厘米,設(shè)注水時(shí)間為t分鐘.

   (1)求k的值(用含a的代數(shù)式表示).

   (2)當(dāng)甲容器的水位第一次比乙容器的水位高1厘米時(shí),求t的值.

(3)當(dāng)甲容器的水位第二次比乙容器的水位高1厘米時(shí),求a,k,t的值.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,BD平分∠ABC,BC的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連結(jié)CF.若∠A=60°,∠ACF =45°,則∠ABC的度數(shù)為(    )

    A.45°                  B.50°                        C.55°                        D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,試求:

    (1)∠EDC的度數(shù);

(2)若∠BCD=n°,試求∠BED的度數(shù).

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案