【題目】如圖,菱形的邊長為1,,點E是邊上任意一點(端點除外),線段的垂直平分線交,分別于點F,G,,的中點分別為M,N.
(1)求證:;
(2)求的最小值;
(3)當(dāng)點E在上運動時,的大小是否變化?為什么?
【答案】(1)見解析;(2);(3)不變,理由見解析.
【解析】
(1)連接CF,根據(jù)垂直平分線的性質(zhì)和菱形的對稱性得到CF=EF和CF=AF即可得證;
(2)連接AC,根據(jù)菱形對稱性得到AF+CF最小值為AC,再根據(jù)中位線的性質(zhì)得到MN+NG的最小值為AC的一半,即可求解;
(3)延長EF,交DC于H,利用外角的性質(zhì)證明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,從而推斷出∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,從而可求出∠ABF=∠CEF=30°,即可證明.
解:(1)連接CF,
∵FG垂直平分CE,
∴CF=EF,
∵四邊形ABCD為菱形,
∴A和C關(guān)于對角線BD對稱,
∴CF=AF,
∴AF=EF;
(2)連接AC,
∵M和N分別是AE和EF的中點,點G為CE中點,
∴MN=AF,NG=CF,即MN+NG=(AF+CF),
當(dāng)點F與菱形ABCD對角線交點O重合時,
AF+CF最小,即此時MN+NG最小,
∵菱形ABCD邊長為1,∠ABC=60°,
∴△ABC為等邊三角形,AC=AB=1,
即MN+NG的最小值為;
(3)不變,理由是:
延長EF,交DC于H,
∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,
∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,
∵點F在菱形ABCD對角線BD上,根據(jù)菱形的對稱性可得:
∠AFD=∠CFD=∠AFC,
∵AF=CF=EF,
∴∠AEF=∠EAF,∠FEC=∠FCE,
∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,
∴∠ABF=∠CEF,
∵∠ABC=60°,
∴∠ABF=∠CEF=30°,為定值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點、的坐標分別為、,點在第一象限內(nèi),,,函數(shù)的圖像經(jīng)過點,將沿軸的正方向向右平移個單位長度,使點恰好落在函數(shù)的圖像上,則的值為( )
A.B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園的門票價格如表:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
現(xiàn)某單位要組織其市場部和生產(chǎn)部的員工游覽該公園,這兩個部門人數(shù)分別為a和b(a≥b).若按部門作為團體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費為1290元;若兩個部門合在一起作為一個團體,同一時間購票游覽公園,則共需支付門票費為990元,那么這兩個部門的人數(shù)a=_____;b=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,觀測站C發(fā)現(xiàn)在它的正西方向,有一艘漁船B出現(xiàn)險情,需救援,當(dāng)即上報救援中心A,測得C在A的南偏東67方向,距A處50海里,而B在A的南偏東30方向,求漁船B與救援中心A的距離AB,漁船B與觀測站C的距離BC.(結(jié)果精確到0.1海里)(參考數(shù)據(jù):sin37=0.6,cos37=0.8,tan37=,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年是脫貧攻堅年,為實現(xiàn)全員脫貧目標,某村貧困戶在當(dāng)?shù)卣С謳椭,辦起了養(yǎng)雞場,經(jīng)過一段時間精心飼養(yǎng),總量為3000只的一批雞可以出售.現(xiàn)從中隨機抽取50只,得到它們質(zhì)量的統(tǒng)計數(shù)據(jù)如下:
質(zhì)量 | 組中值 | 數(shù)量(只) |
1.0 | 6 | |
1.2 | 9 | |
1.4 | a | |
1.6 | 15 | |
1.8 | 8 |
根據(jù)以上信息,解答下列問題:
(1)表中______,補全頻數(shù)分布直方圖;
(2)這批雞中質(zhì)量不小于的大約有多少只?
(3)這些貧因戶的總收入達到54000元,就能實現(xiàn)全員脫貧目標.按15元的價格售出這批雞后,該村貧困戶能否脫貧?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB是的直徑,點C是上一點,連接AC、BC,直線MN過點C,滿足.
(1)如圖①,求證:直線MN是的切線;
(2)如圖②,點D在線段BC上,過點D作于點H,直線DH交于點E、F,連接AF并延長交直線MN于點G,連接CE,且,若的半徑為1,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC中點,AE∥BD,且AE=BD.
(1)求證:四邊形AEBD是矩形;
(2)連接CE交AB于點F,若∠ABE=30°,AE=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接:“國家衛(wèi)生城市”復(fù)檢,某市壞衛(wèi)局準備購買A、B兩種型號的垃圾箱,通過市場調(diào)研得知:購買3個A型垃圾箱和2個B型垃圾箱共需540元,購買2個A型垃圾箱比購買3個B型垃圾箱少用160元.
(1)求每個A型垃圾箱和B型垃圾箱各多少元?
(2)該市現(xiàn)需要購A、B買兩種型號的垃圾箱共30個,其中買A型垃圾箱不超過16個.求出購買費用最少時的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的兩條互相垂直的直徑,點P從點O出發(fā),沿的路線勻速運動,設(shè)(單位:度),那么y與點P運動的時間(單位:秒)的關(guān)系圖是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com