(2010•鄂爾多斯)用折紙的方法,可以直接剪出一個正五邊形,折紙過程如圖所示,則∠α等于( )
A.108°
B.90°
C.72°
D.60°
【答案】分析:正五邊形有5個內(nèi)角,由折疊得到是10個小角,那么剪開展開后可得α的兩條邊分別為正五邊形的對稱軸和邊的一半,根據(jù)它們的位置關系判斷即可.
解答:解:由折疊易得要剪的是正五邊形邊的一半,α的另一邊為正五邊形的對稱軸,由正五邊形是軸對稱圖形可得邊垂直于對稱軸,那么α為90°,故選B.
點評:解決本題的關鍵是由折疊得到所求的角的兩邊為正五邊形的哪一部分.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2010•鄂爾多斯)如圖,四邊形OABC是一張放在平面直角坐標系的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=15,OC=9,在AB上取一點M,使得△CBM沿CM翻折后,點B落在x軸上,記作N點.
(1)求N點、M點的坐標;
(2)將拋物線y=x2-36向右平移a(0<a<10)個單位后,得到拋物線l,l經(jīng)過點N,求拋物線l的解析式;
(3)①拋物線l的對稱軸上存在點P,使得P點到M、N兩點的距離之差最大,求P點的坐標;
②若點D是線段OC上的一個動點(不與O、C重合),過點D作DE∥OA交CN于E,設CD的長為m,△PDE的面積為S,求S與m之間的函數(shù)關系式,并說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2010•鄂爾多斯)定義新運算:a※b=,則函數(shù)y=3※x的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年內(nèi)蒙古鄂爾多斯市中考數(shù)學試卷(解析版) 題型:解答題

(2010•鄂爾多斯)如圖,四邊形OABC是一張放在平面直角坐標系的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=15,OC=9,在AB上取一點M,使得△CBM沿CM翻折后,點B落在x軸上,記作N點.
(1)求N點、M點的坐標;
(2)將拋物線y=x2-36向右平移a(0<a<10)個單位后,得到拋物線l,l經(jīng)過點N,求拋物線l的解析式;
(3)①拋物線l的對稱軸上存在點P,使得P點到M、N兩點的距離之差最大,求P點的坐標;
②若點D是線段OC上的一個動點(不與O、C重合),過點D作DE∥OA交CN于E,設CD的長為m,△PDE的面積為S,求S與m之間的函數(shù)關系式,并說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省十堰市鄖西縣中考適應性考試數(shù)學試卷(解析版) 題型:選擇題

(2010•鄂爾多斯)如圖,某電信公司提供了A,B兩種方案的移動通訊費用y(元)與通話時間x(元)之間的關系,則以下說法錯誤的是( )

A.若通話時間少于120分,則A方案比B方案便宜20元
B.若通話時間超過200分,則B方案比A方案便宜12元
C.若通訊費用為60元,則B方案比A方案的通話時間多
D.若兩種方案通訊費用相差10元,則通話時間是145分或185分

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省黃岡市浠水縣麻橋中學中考模擬數(shù)學試卷(解析版) 題型:選擇題

(2010•鄂爾多斯)如圖,某電信公司提供了A,B兩種方案的移動通訊費用y(元)與通話時間x(元)之間的關系,則以下說法錯誤的是( )

A.若通話時間少于120分,則A方案比B方案便宜20元
B.若通話時間超過200分,則B方案比A方案便宜12元
C.若通訊費用為60元,則B方案比A方案的通話時間多
D.若兩種方案通訊費用相差10元,則通話時間是145分或185分

查看答案和解析>>

同步練習冊答案