(2012•河南)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,
EC
=
CB
.則下列結(jié)論中不一定正確的是(  )
分析:分別根據(jù)切線的性質(zhì)、平行線的判定定理及圓周角定理對(duì)各選項(xiàng)進(jìn)行逐一判斷即可.
解答:解:∵AB是⊙O的直徑,AD切⊙O于點(diǎn)A,
∴BA⊥DA,故A正確;
EC
=
CB

∴∠EAC=∠CAB,
∵OA=OC,
∴∠CAB=∠ACO,
∴∠EAC=∠ACO,
∴OC∥AE,故B正確;
∵∠COE是
CE
所對(duì)的圓心角,∠CAE是
CE
所對(duì)的圓周角,
∴∠COE=2∠CAE,故C正確;
只有當(dāng)
AE
=
CE
時(shí)OD⊥AC,故本選項(xiàng)錯(cuò)誤.
故選D.
點(diǎn)評(píng):本題考查的是切線的性質(zhì),圓周角定理及圓心角、弧、弦的關(guān)系,熟知圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖所示的幾何體的左視圖是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑畫弧,分別交AB、AC于點(diǎn)E、F;②分別以點(diǎn)E、F為圓心,大于
12
EF的長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)G;③作射線AG交BC邊于點(diǎn)D.則∠ADC的度數(shù)為
65°
65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在平面直角坐標(biāo)系中,直線y=
12
x+1與拋物線y=ax2+bx-3交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為3.點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn)(不與A、B點(diǎn)重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求a、b及sin∠ACP的值;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含有m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD長(zhǎng)的最大值;
②連接PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,直接寫出m的值,使這兩個(gè)三角形的面積之比為9:10?若存在,直接寫出m的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案